Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91464684
main.bbl
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 11, 09:31
Size
14 KB
Mime Type
text/x-tex
Expires
Wed, Nov 13, 09:31 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22266876
Attached To
R7172 Nonlinear
main.bbl
View Options
\begin{thebibliography}{10}
\bibitem{arora2018compressed}
S.~Arora, M.~Khodak, N.~Saunshi, and K.~Vodrahalli.
\newblock A compressed sensing view of unsupervised text embeddings,
bag-of-n-grams, and lstms.
\newblock 2018.
\bibitem{barvinok1995problems}
A.~I. Barvinok.
\newblock Problems of distance geometry and convex properties of quadratic
maps.
\newblock {\em Discrete \& Computational Geometry}, 13(2):189--202, 1995.
\bibitem{bertsekas1976penalty}
D.~P. Bertsekas.
\newblock On penalty and multiplier methods for constrained minimization.
\newblock {\em SIAM Journal on Control and Optimization}, 14(2):216--235, 1976.
\bibitem{bertsekas1982constrained}
D.~P. Bertsekas.
\newblock Constrained optimization and lagrange multiplier methods.
\newblock {\em Computer Science and Applied Mathematics, Boston: Academic
Press, 1982}, 1982.
\bibitem{bertsekas2014constrained}
D.~P. Bertsekas.
\newblock {\em Constrained optimization and Lagrange multiplier methods}.
\newblock Academic press, 2014.
\bibitem{bhojanapalli2018smoothed}
S.~Bhojanapalli, N.~Boumal, P.~Jain, and P.~Netrapalli.
\newblock Smoothed analysis for low-rank solutions to semidefinite programs in
quadratic penalty form.
\newblock {\em arXiv preprint arXiv:1803.00186}, 2018.
\bibitem{bhojanapalli2016dropping}
S.~Bhojanapalli, A.~Kyrillidis, and S.~Sanghavi.
\newblock Dropping convexity for faster semi-definite optimization.
\newblock In {\em Conference on Learning Theory}, pages 530--582, 2016.
\bibitem{birgin2016evaluation}
E.~G. Birgin, J.~Gardenghi, J.~M. Martinez, S.~Santos, and P.~L. Toint.
\newblock Evaluation complexity for nonlinear constrained optimization using
unscaled kkt conditions and high-order models.
\newblock {\em SIAM Journal on Optimization}, 26(2):951--967, 2016.
\bibitem{birgin2014practical}
E.~G. Birgin and J.~M. Mart\_nez.
\newblock {\em Practical augmented Lagrangian methods for constrained
optimization}, volume~10.
\newblock SIAM, 2014.
\bibitem{bolte2017error}
J.~Bolte, T.~P. Nguyen, J.~Peypouquet, and B.~W. Suter.
\newblock From error bounds to the complexity of first-order descent methods
for convex functions.
\newblock {\em Mathematical Programming}, 165(2):471--507, 2017.
\bibitem{bolte2018nonconvex}
J.~Bolte, S.~Sabach, and M.~Teboulle.
\newblock Nonconvex lagrangian-based optimization: monitoring schemes and
global convergence.
\newblock {\em Mathematics of Operations Research}, 2018.
\bibitem{boumal2016global}
N.~Boumal, P.-A. Absil, and C.~Cartis.
\newblock Global rates of convergence for nonconvex optimization on manifolds.
\newblock {\em arXiv preprint arXiv:1605.08101}, 2016.
\bibitem{boumal2014manopt}
N.~Boumal, B.~Mishra, P.-A. Absil, and R.~Sepulchre.
\newblock Manopt, a matlab toolbox for optimization on manifolds.
\newblock {\em The Journal of Machine Learning Research}, 15(1):1455--1459,
2014.
\bibitem{boumal2016non}
N.~Boumal, V.~Voroninski, and A.~Bandeira.
\newblock The non-convex burer-monteiro approach works on smooth semidefinite
programs.
\newblock In {\em Advances in Neural Information Processing Systems}, pages
2757--2765, 2016.
\bibitem{burer2003nonlinear}
S.~Burer and R.~D. Monteiro.
\newblock A nonlinear programming algorithm for solving semidefinite programs
via low-rank factorization.
\newblock {\em Mathematical Programming}, 95(2):329--357, 2003.
\bibitem{burer2005local}
S.~Burer and R.~D. Monteiro.
\newblock Local minima and convergence in low-rank semidefinite programming.
\newblock {\em Mathematical Programming}, 103(3):427--444, 2005.
\bibitem{candes2008introduction}
E.~J. Cand{\`e}s and M.~B. Wakin.
\newblock An introduction to compressive sampling.
\newblock {\em IEEE signal processing magazine}, 25(2):21--30, 2008.
\bibitem{cartis2011evaluation}
C.~Cartis, N.~I. Gould, and P.~L. Toint.
\newblock On the evaluation complexity of composite function minimization with
applications to nonconvex nonlinear programming.
\newblock {\em SIAM Journal on Optimization}, 21(4):1721--1739, 2011.
\bibitem{cartis2012complexity}
C.~Cartis, N.~I. Gould, and P.~L. Toint.
\newblock Complexity bounds for second-order optimality in unconstrained
optimization.
\newblock {\em Journal of Complexity}, 28(1):93--108, 2012.
\bibitem{cartis2018optimality}
C.~Cartis, N.~I. Gould, and P.~L. Toint.
\newblock Optimality of orders one to three and beyond: characterization and
evaluation complexity in constrained nonconvex optimization.
\newblock {\em Journal of Complexity}, 2018.
\bibitem{chambolle2011first}
A.~Chambolle and T.~Pock.
\newblock A first-order primal-dual algorithm for convex problems with
applications to imaging.
\newblock {\em Journal of mathematical imaging and vision}, 40(1):120--145,
2011.
\bibitem{chen2001atomic}
S.~S. Chen, D.~L. Donoho, and M.~A. Saunders.
\newblock Atomic decomposition by basis pursuit.
\newblock {\em SIAM review}, 43(1):129--159, 2001.
\bibitem{clason2018acceleration}
C.~Clason, S.~Mazurenko, and T.~Valkonen.
\newblock Acceleration and global convergence of a first-order primal--dual
method for nonconvex problems.
\newblock {\em arXiv preprint arXiv:1802.03347}, 2018.
\bibitem{dai2002convergence}
Y.-H. Dai.
\newblock Convergence properties of the bfgs algoritm.
\newblock {\em SIAM Journal on Optimization}, 13(3):693--701, 2002.
\bibitem{fernandez2012local}
D.~Fernandez and M.~V. Solodov.
\newblock Local convergence of exact and inexact augmented lagrangian methods
under the second-order sufficient optimality condition.
\newblock {\em SIAM Journal on Optimization}, 22(2):384--407, 2012.
\bibitem{fletcher2013practical}
R.~Fletcher.
\newblock {\em Practical methods of optimization}.
\newblock John Wiley \& Sons, 2013.
\bibitem{flores2012complete}
F.~Flores-Baz{\'a}n, F.~Flores-Baz{\'a}n, and C.~Vera.
\newblock A complete characterization of strong duality in nonconvex
optimization with a single constraint.
\newblock {\em Journal of Global Optimization}, 53(2):185--201, 2012.
\bibitem{ge2016efficient}
R.~Ge, C.~Jin, P.~Netrapalli, A.~Sidford, et~al.
\newblock Efficient algorithms for large-scale generalized eigenvector
computation and canonical correlation analysis.
\newblock In {\em International Conference on Machine Learning}, pages
2741--2750, 2016.
\bibitem{ghadimi2016accelerated}
S.~Ghadimi and G.~Lan.
\newblock Accelerated gradient methods for nonconvex nonlinear and stochastic
programming.
\newblock {\em Mathematical Programming}, 156(1-2):59--99, 2016.
\bibitem{Goodfellow2014}
I.~J. {Goodfellow}, J.~{Pouget-Abadie}, M.~{Mirza}, B.~{Xu}, D.~{Warde-Farley},
S.~{Ozair}, A.~{Courville}, and Y.~{Bengio}.
\newblock {Generative Adversarial Networks}.
\newblock {\em ArXiv e-prints}, June 2014.
\bibitem{hestenes1969multiplier}
M.~R. Hestenes.
\newblock Multiplier and gradient methods.
\newblock {\em Journal of optimization theory and applications}, 4(5):303--320,
1969.
\bibitem{Ilyas2017}
A.~{Ilyas}, A.~{Jalal}, E.~{Asteri}, C.~{Daskalakis}, and A.~G. {Dimakis}.
\newblock {The Robust Manifold Defense: Adversarial Training using Generative
Models}.
\newblock {\em arXiv e-prints}, page arXiv:1712.09196, Dec. 2017.
\bibitem{jaggi2013revisiting}
M.~Jaggi.
\newblock Revisiting frank-wolfe: Projection-free sparse convex optimization.
\newblock In {\em ICML (1)}, pages 427--435, 2013.
\bibitem{karimi2016linear}
H.~Karimi, J.~Nutini, and M.~Schmidt.
\newblock Linear convergence of gradient and proximal-gradient methods under
the polyak-{\l}ojasiewicz condition.
\newblock In {\em Joint European Conference on Machine Learning and Knowledge
Discovery in Databases}, pages 795--811. Springer, 2016.
\bibitem{khot2011grothendieck}
S.~Khot and A.~Naor.
\newblock Grothendieck-type inequalities in combinatorial optimization.
\newblock {\em arXiv preprint arXiv:1108.2464}, 2011.
\bibitem{kulis2007fast}
B.~Kulis, A.~C. Surendran, and J.~C. Platt.
\newblock Fast low-rank semidefinite programming for embedding and clustering.
\newblock In {\em Artificial Intelligence and Statistics}, pages 235--242,
2007.
\bibitem{lan2016iteration}
G.~Lan and R.~D. Monteiro.
\newblock Iteration-complexity of first-order augmented lagrangian methods for
convex programming.
\newblock {\em Mathematical Programming}, 155(1-2):511--547, 2016.
\bibitem{lovasz2003semidefinite}
L.~Lov{\'a}sz.
\newblock Semidefinite programs and combinatorial optimization.
\newblock In {\em Recent advances in algorithms and combinatorics}, pages
137--194. Springer, 2003.
\bibitem{mascarenhas2004bfgs}
W.~F. Mascarenhas.
\newblock The bfgs method with exact line searches fails for non-convex
objective functions.
\newblock {\em Mathematical Programming}, 99(1):49--61, 2004.
\bibitem{mixon2016clustering}
D.~G. Mixon, S.~Villar, and R.~Ward.
\newblock Clustering subgaussian mixtures by semidefinite programming.
\newblock {\em arXiv preprint arXiv:1602.06612}, 2016.
\bibitem{mossel2015consistency}
E.~Mossel, J.~Neeman, and A.~Sly.
\newblock Consistency thresholds for the planted bisection model.
\newblock In {\em Proceedings of the forty-seventh annual ACM symposium on
Theory of computing}, pages 69--75. ACM, 2015.
\bibitem{nedelcu2014computational}
V.~Nedelcu, I.~Necoara, and Q.~Tran-Dinh.
\newblock Computational complexity of inexact gradient augmented lagrangian
methods: application to constrained mpc.
\newblock {\em SIAM Journal on Control and Optimization}, 52(5):3109--3134,
2014.
\bibitem{nesterov2009primal}
Y.~Nesterov.
\newblock Primal-dual subgradient methods for convex problems.
\newblock {\em Mathematical programming}, 120(1):221--259, 2009.
\bibitem{nesterov1983method}
Y.~E. Nesterov.
\newblock A method for solving the convex programming problem with convergence
rate o (1/k\^{} 2).
\newblock In {\em Dokl. Akad. Nauk SSSR}, volume 269, pages 543--547, 1983.
\bibitem{nocedal2006numerical}
J.~Nocedal and S.~Wright.
\newblock {\em Numerical Optimization}.
\newblock Springer Series in Operations Research and Financial Engineering.
Springer New York, 2006.
\bibitem{nouiehed2018convergence}
M.~Nouiehed, J.~D. Lee, and M.~Razaviyayn.
\newblock Convergence to second-order stationarity for constrained non-convex
optimization.
\newblock {\em arXiv preprint arXiv:1810.02024}, 2018.
\bibitem{obozinski2011group}
G.~Obozinski, L.~Jacob, and J.-P. Vert.
\newblock Group lasso with overlaps: the latent group lasso approach.
\newblock {\em arXiv preprint arXiv:1110.0413}, 2011.
\bibitem{parikh2014proximal}
N.~Parikh, S.~Boyd, et~al.
\newblock Proximal algorithms.
\newblock {\em Foundations and Trends in Optimization}, 1(3):127--239, 2014.
\bibitem{park2016provable}
D.~Park, A.~Kyrillidis, S.~Bhojanapalli, C.~Caramanis, and S.~Sanghavi.
\newblock Provable burer-monteiro factorization for a class of norm-constrained
matrix problems.
\newblock {\em arXiv preprint arXiv:1606.01316}, 2016.
\bibitem{pataki1998rank}
G.~Pataki.
\newblock On the rank of extreme matrices in semidefinite programs and the
multiplicity of optimal eigenvalues.
\newblock {\em Mathematics of operations research}, 23(2):339--358, 1998.
\bibitem{Peng2007}
J.~Peng and Y.~Wei.
\newblock Approximating {K}--means--type clustering via semidefinite
programming.
\newblock {\em SIAM J. Optim.}, 18(1):186--205, 2007.
\bibitem{powell1969method}
M.~J. Powell.
\newblock A method for nonlinear constraints in minimization problems.
\newblock {\em Optimization}, pages 283--298, 1969.
\bibitem{raghavendra2008optimal}
P.~Raghavendra.
\newblock Optimal algorithms and inapproximability results for every csp?
\newblock In {\em Proceedings of the fortieth annual ACM symposium on Theory of
computing}, pages 245--254. ACM, 2008.
\bibitem{rockafellar1993lagrange}
R.~T. Rockafellar.
\newblock Lagrange multipliers and optimality.
\newblock {\em SIAM review}, 35(2):183--238, 1993.
\bibitem{singer2011angular}
A.~Singer.
\newblock Angular synchronization by eigenvectors and semidefinite programming.
\newblock {\em Applied and computational harmonic analysis}, 30(1):20, 2011.
\bibitem{singer2011three}
A.~Singer and Y.~Shkolnisky.
\newblock Three-dimensional structure determination from common lines in
cryo-em by eigenvectors and semidefinite programming.
\newblock {\em SIAM journal on imaging sciences}, 4(2):543--572, 2011.
\bibitem{song2007dependence}
L.~Song, A.~Smola, A.~Gretton, and K.~M. Borgwardt.
\newblock A dependence maximization view of clustering.
\newblock In {\em Proceedings of the 24th international conference on Machine
learning}, pages 815--822. ACM, 2007.
\bibitem{tepper2018clustering}
M.~Tepper, A.~M. Sengupta, and D.~Chklovskii.
\newblock Clustering is semidefinitely not that hard: Nonnegative sdp for
manifold disentangling.
\newblock {\em Journal of Machine Learning Research}, 19(82), 2018.
\bibitem{tran2018adaptive}
Q.~Tran-Dinh, A.~Alacaoglu, O.~Fercoq, and V.~Cevher.
\newblock An adaptive primal-dual framework for nonsmooth convex minimization.
\newblock {\em arXiv preprint arXiv:1808.04648}, 2018.
\bibitem{tran2018smooth}
Q.~Tran-Dinh, O.~Fercoq, and V.~Cevher.
\newblock A smooth primal-dual optimization framework for nonsmooth composite
convex minimization.
\newblock {\em SIAM Journal on Optimization}, 28(1):96--134, 2018.
\bibitem{waldspurger2018rank}
I.~Waldspurger and A.~Waters.
\newblock Rank optimality for the burer-monteiro factorization.
\newblock {\em arXiv preprint arXiv:1812.03046}, 2018.
\bibitem{xiao2017/online}
H.~Xiao, K.~Rasul, and R.~Vollgraf.
\newblock Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms, 2017.
\bibitem{xu2017inexact}
Y.~Xu.
\newblock Iteration complexity of inexact augmented lagrangian methods for
constrained convex programming.
\newblock {\em arXiv preprint arXiv:1711.05812v2}, 2017.
\bibitem{xu2017globally}
Y.~Xu and W.~Yin.
\newblock A globally convergent algorithm for nonconvex optimization based on
block coordinate update.
\newblock {\em Journal of Scientific Computing}, 72(2):700--734, 2017.
\bibitem{yang2015sdpnal}
L.~Yang, D.~Sun, and K.-C. Toh.
\newblock Sdpnal+: a majorized semismooth newton-cg augmented lagrangian method
for semidefinite programming with nonnegative constraints.
\newblock {\em Mathematical Programming Computation}, 7(3):331--366, 2015.
\bibitem{yurtsever2015universal}
A.~Yurtsever, Q.~T. Dinh, and V.~Cevher.
\newblock A universal primal-dual convex optimization framework.
\newblock In {\em Advances in Neural Information Processing Systems}, pages
3150--3158, 2015.
\bibitem{yurtsever2018conditional}
A.~Yurtsever, O.~Fercoq, F.~Locatello, and V.~Cevher.
\newblock A conditional gradient framework for composite convex minimization
with applications to semidefinite programming.
\newblock {\em arXiv preprint arXiv:1804.08544}, 2018.
\bibitem{zhao1998semidefinite}
Q.~Zhao, S.~E. Karisch, F.~Rendl, and H.~Wolkowicz.
\newblock Semidefinite programming relaxations for the quadratic assignment
problem.
\newblock {\em Journal of Combinatorial Optimization}, 2(1):71--109, 1998.
\end{thebibliography}
Event Timeline
Log In to Comment