
Inexact Augmented Lagrangian Framework for
Non-Convex Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose a practical inexact augmented Lagrangian method (iALM) for noncon-1

vex problems with nonlinear constrains. We characterize the total computational2

complexity of our method subject to a verifiable geometric condition, which is3

closely related to the Polyak-Lojsiewicz and Mangasarian-Fromowitz conditions.4

In particular, when a first-order solver is used for the inner iterates, we prove that5

iALM finds a first-order stationary point with Õ(1/ε3) calls to the first-order oracle.6

If, in addition, the problem is smooth and a second-order solver is used for the7

inner iterates, iALM finds a second-order stationary point with Õ(1/ε5) calls to8

the second-order oracle. These complexity results match the known theoretical9

results in the literature with a simple, implementable and versatile algorithm.10

We provide numerical evidence on large-scale machine learning problems, in-11

cluding the Burer-Monteiro factorization of semidefinite programs, and a novel12

nonconvex relaxation of the standard basis pursuit template. We verify our geomet-13

ric condition in all these examples.14

1 Introduction15

We study the nonconvex optimization problem16 {
min
x∈Rd

f(x) + g(x)

A(x) = 0,
(1)

where f : Rd → R is a continuously-differentiable nonconvex function and A : Rd → Rm is a17

nonlinear operator. We assume that g : Rd → R is a possibly nonsmooth but proximal-friendly18

convex function [49].19

A host of problems in computer science [36, 39, 69], machine learning [42, 58], and signal pro-20

cessing [56, 57] naturally fall under the template (1), including max-cut, clustering, generalized21

eigenvalue decomposition, as well as the quadratic assignment problem (QAP) [69].22

To solve (1), this paper proposes an intuitive and easy-to-implement augmented Lagrangian algorithm,23

and provides its total iteration complexity under an interpretable geometric condition. Before we24

elaborate on the results, let us first motivate (1) with an application to semidefinite programming25

(SDP):26

Vignette: Burer-Monteiro splitting. A powerful convex relaxation for max-cut, clustering, and27

many others is provided by the SDP28 {
min

X∈Sd×d
〈C,X〉

B(X) = b, X � 0,
(2)

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

where C ∈ Rd×d, X is a positive semidefinite d× d matrix, and B : Sd×d → Rm is a linear operator.29

If the unique-games conjecture is true, SDPs achieve the best approximation for the underlying30

discrete problem [54].31

Since d is often large, many first- and second-order methods for solving such SDP’s are immedi-32

ately ruled out, not only due to their high computational complexity, but also due to their storage33

requirements, which are O(d2).34

A contemporary challenge in optimization is therefore to solve SDPs using little space and in a35

scalable fashion. The recent homotopy conditional gradient method, which is based on linear36

minimization oracles (LMOs), can solve (2) in a small space via sketching [68]. However, such37

LMO-based methods are extremely slow in obtaining accurate solutions.38

A different approach for solving (1), dating back to [16, 17], is the so-called Burer-Monteiro (BM)39

factorization X = UU>, where U ∈ Rd×r and r is selected according to the guidelines in [51, 2],40

which are shown to be optimal [62]. This factorization does not introduce any extraneous local41

minima [17] and, moreover, [15] established the connection between the local minimizers of the42

factorized problem (3) and the global minimizers for (2).43

This factorization leads to the nonconvex problem44 {
min

U∈Rd×r
〈C,UU>〉

B(UU>) = b,
(3)

which can be easily written in the form of (1). To solve (3), the inexact Augmented Lagrangian45

method (iALM) is widely used [16, 17, 37], due to its cheap per iteration cost and its empirical46

success. Every (outer) iteration of iALM calls a solver to solve an intermediate augmented Lagrangian47

subproblem to near stationarity. The user is free in the choice of this solver, which could use first-48

order, such as the proximal gradient descent [49], or second-order information, such as the trust49

region method and BFGS [46].150

Unlike its convex counterpart [43, 38, 64], the convergence rate and the complexity of iALM for (3)51

are not well-understood, see Section 5 for a review of the related literature. Indeed, addressing this52

important theoretical gap is one of the contributions of our work.53

Summary of contributions:54

◦ We derive the convergence rate of iALM for solving (1) to first- or second-order optimality, and55

find the total iteration complexity of iALM using different solvers for the augmented Lagrangian56

subproblems. Our complexity bounds match the best theoretical results in optimization, see Section 5.57

◦ Our results are future-proof in the sense that they are independent of the choice of solver called by58

iALM.59

◦We propose a geometric condition that simplifies the algorithmic analysis for iALM, and clarify its60

connection to well-known Polyak-Lojasiewicz [35] and Mangasarian-Fromovitz [5] conditions. We61

also verify this condition for key problems in Section 6.62

Roadmap. Section 2 collects the main tools and our notation. We present the iALM in Section 363

and obtain its convergence rate to first- and second-order stationary points in Section 4, alongside64

their iteration complexities. We provide a comprehensive review of the literature and highlight our65

key differences in Section 5. Section 6 presents the numerical evidence and comparisons with the66

state-of-the-art techniques.67

2 Preliminaries68

Notation. We use the notation 〈·, ·〉 and ‖ · ‖ for the standard inner product and the norm on Rd. For69

matrices, ‖ · ‖ and ‖ · ‖F denote the spectral and the Frobenius norms, respectively. For the convex70

function g : Rd → R, the subdifferential set at x ∈ Rd is denoted by ∂g(x) and we will occasionally71

use the notation ∂g(x)/β = {z/β : z ∈ ∂g(x)}. When presenting iteration complexity results, we72

often use Õ(·) which suppresses the logarithmic dependencies.73

1Strictly speaking, BFGS is in fact a quasi-Newton method that emulates second-order information.

2

We use the indicator function δX : Rd → R of a set X ⊂ Rd, which takes x to74

δX (x) =

{
0 x ∈ X
∞ x /∈ X . (4)

The distance function from a point x to X is denoted by dist(x,X) = minz∈X ‖x− z‖. For integers75

k0 ≤ k1, we denote [k0 : k1] = {k0, . . . , k1}.76

For an operator A : Rd → Rm with components {Ai}mi=1, we let DA(x) ∈ Rm×d denote the77

Jacobian of A, where the ith row of DA(x) is the gradient vector∇Ai(x) ∈ Rd.78

Smoothness. We require f : Rd → R and A : Rd → Rm to be smooth, namely, there exist79

λf , λA ≥ 0 such that80

‖∇f(x)−∇f(x′)‖ ≤ λf‖x− x′‖,
‖DA(x)−DA(x′)‖ ≤ λA‖x− x′‖, (5)

for every x, x′ ∈ Rd.81

Augmented Lagrangian method (ALM). ALM is a classical algorithm, which first appeared in [32,82

53] and extensively studied afterwards in [5, 10]. For solving (1), ALM suggests solving the problem83

min
x

max
y
Lβ(x, y) + g(x), (6)

where, for penalty weight β > 0, Lβ is the corresponding augmented Lagrangian, defined as84

Lβ(x, y) := f(x) + 〈A(x), y〉+
β

2
‖A(x)‖2. (7)

The minimax formulation in (6) naturally suggests the following algorithm for solving (1). For dual85

step sizes {σk}k, consider the iterations86

xk+1 ∈ argmin
x

Lβ(x, yk) + g(x), (8)

87
yk+1 = yk + σkA(xk+1).

However, computing xk+1 above requires solving the nonconvex problem (8) to optimality, which is88

typically intractable. Instead, it is often easier to find an approximate first- or second-order stationary89

point of (8).90

Hence, we argue that by gradually improving the stationarity precision and increasing the penalty91

weight β above, we can reach a stationary point of the main problem in (1), as detailed in Section 3.92

Optimality conditions. First-order necessary optimality conditions for (1) are well-studied. Indeed,93

x ∈ Rd is a first-order stationary point of (1) if there exists y ∈ Rm such that94 {
−∇f(x)−DA(x)>y ∈ ∂g(x)

A(x) = 0,
(9)

where DA(x) is the Jacobian of A at x. Recalling (7), we observe that (9) is equivalent to95 {
−∇xLβ(x, y) ∈ ∂g(x)

A(x) = 0,
(10)

which is in turn the necessary optimality condition for (6). Inspired by this, we say that x is an (εf , β)96

first-order stationary point of (6) if there exists a y ∈ Rm such that97 {
dist(−∇xLβ(x, y), ∂g(x)) ≤ εf
‖A(x)‖ ≤ εf ,

(11)

for εf ≥ 0. In light of (11), a suitable metric for evaluating the stationarity of a pair (x, y) ∈ Rd×Rm98

is99

dist (−∇xLβ(x, y), ∂g(x)) + ‖A(x)‖, (12)

3

which we use as the first-order stopping criterion. As an example, for a convex set X ⊂ Rd, suppose100

that g = δX is the indicator function on X . Let also TX (x) ⊆ Rd denote the tangent cone to X at x,101

and with PTX (x) : Rd → Rd we denote the orthogonal projection onto this tangent cone. Then, for102

u ∈ Rd, it is not difficult to verify that103

dist (u, ∂g(x)) = ‖PTX (x)(u)‖. (13)

When g = 0, a first-order stationary point x ∈ Rd of (1) is also second-order stationary if104

λmin(∇xxLβ(x, y)) ≥ 0, (14)

where ∇xxLβ is the Hessian of Lβ with respect to x, and λmin(·) returns the smallest eigenvalue of105

its argument. Analogously, x is an (εf , εs, β) second-order stationary point if, in addition to (11), it106

holds that107

λmin(∇xxLβ(x, y)) ≥ −εs, (15)

for εs ≥ 0. Naturally, for second-order stationarity, we use λmin(∇xxLβ(x, y)) as the stopping108

criterion.109

Smoothness lemma. This next result controls the smoothness of Lβ(·, y) for a fixed y. The proof110

is standard but nevertheless is included in Appendix C for completeness.111

Lemma 2.1 (smoothness) For fixed y ∈ Rm and ρ, ρ′ ≥ 0, it holds that112

‖∇xLβ(x, y)−∇xLβ(x′, y)‖ ≤ λβ‖x− x′‖, (16)

for every x, x′ ∈ {x′′ : ‖x′′‖ ≤ ρ, ‖A(x′′)‖ ≤ ρ′}, where113

λβ ≤ λf +
√
mλA‖y‖+ (

√
mλAρ

′ + dλ′2A)β

=: λf +
√
mλA‖y‖+ λ′′(A, ρ, ρ′)β. (17)

Above, λf , λA were defined in (5) and114

λ′A := max
‖x‖≤ρ

‖DA(x)‖. (18)

3 Algorithm115

To solve the equivalent formulation of (1) presented in (6), we propose the inexact ALM (iALM),116

detailed in Algorithm 1.117

At the kth iteration, Step 2 of Algorithm 1 calls a solver that finds an approximate stationary point118

of the augmented Lagrangian Lβk
(·, yk) with the accuracy of εk+1, and this accuracy gradually119

increases in a controlled fashion.120

The increasing sequence of penalty weights {βk}k and the dual update (Steps 4 and 5) are responsible121

for continuously enforcing the constraints in (1). The appropriate choice for {βk}k will be specified122

in Sections 4.1 and 4.2.123

The particular choice of the dual step sizes {σk}k in Algorithm 1 ensures that the dual variable yk124

remains bounded, see [4] for a precedent in the ALM literature where a similar dual step size is125

considered.126

4 Convergence Rate127

In this section, we derive the total iteration complexity of Algorithm 1 for finding first-order and128

second-order stationary points of problem (1). All the proofs are deferred to Appendix A. Theorem 4.1129

below characterizes the convergence rate of Algorithm 1 for finding stationary points in terms of the130

number of outer iterations.131

132

4

Algorithm 1 Inexact ALM for solving (1)
Input: Non-decreasing, positive, unbounded sequence {βk}k≥1, stopping thresholds τf > 0 and
τs > 0.
Initialization: Initial primal variable x1 ∈ Rd, initial dual variable y0 ∈ Rm, initial dual step size
σ1 > 0.
for k = 1, 2, . . . do

1. (Update tolerance) εk+1 = 1/βk.
2. (Inexact primal solution) Obtain xk+1 ∈ Rd such that

dist(−∇xLβk
(xk+1, yk), ∂g(xk+1)) ≤ εk+1

for first-order stationarity

λmin(∇xxLβk
(xk+1, yk)) ≥ −εk+1

for second-order-stationarity, if g = 0 in (1).
3. (Update dual step size)

σk+1 = σ1 min
(‖A(x1)‖ log2 2

‖A(xk+1)‖(k + 1) log2(k + 2)
, 1
)
.

4. (Dual ascent) yk+1 = yk + σk+1A(xk+1).
5. (Stopping criterion) If

dist(−∇xLβk
(xk+1), ∂g(xk+1)) + ‖A(xk+1)‖ ≤ τf ,

for first-order stationarity and if also λmin(∇xxLβk
(xk+1, yk)) ≥ −τs for second-order

stationarity, then quit and return xk+1 as an (approximate) stationary point of (1).
end for

Theorem 4.1 (convergence rate) For integers 2 ≤ k0 ≤ k1, consider the interval K = [k0 :133

k1], and let {xk}k∈K be the output sequence of Algorithm 1 on the interval K.2 Let also ρ :=134

supk∈[K] ‖xk‖.3 Suppose that f and A satisfy (5) and let135

λ′f = max
‖x‖≤ρ

‖∇f(x)‖, λ′A = max
‖x‖≤ρ

‖DA(x)‖, (19)

be the (restricted) Lipschitz constants of f and A, respectively. With ν > 0, assume that136

ν‖A(xk)‖ ≤ dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
, (20)

for every k ∈ K. We consider two cases:137

• If a first-order solver is used in Step 2, then xk is an (εk,f , βk) first-order stationary point of (1)138

with139

εk,f =
1

βk−1

(
2(λ′f + λ′Aymax)(1 + λ′Aσk)

ν
+ 1

)
=:

Q(f, g, A, σ1)

βk−1
, (21)

for every k ∈ K, where ymax(x1, y0, σ1) is specified in (41) due to the limited space.140

2The choice of k1 = ∞ is valid here too.
3If necessary, to ensure that ρ < ∞, one can add a small factor of ‖x‖2 to Lβ in (7). Then it is easy to

verify that the iterates of Algorithm 1 remain bounded, provided that the penalty weight β is large enough,
supx ‖∇f(x)‖/‖x‖ <∞, supx ‖A(x)‖ <∞, and supx ‖DA(x)‖ <∞.

5

• If a second-order solver is used in Step 2, then xk is an (εk,f , εk,s, βk) second-order stationary141

point of (1) with εk,s specified above and with142

εk,s = εk−1 + σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1

=
ν + σk

√
mλA2λ′f + 2λ′Aymax

νβk−1
=:

Q′(f, g, A, σ1)

βk−1
. (22)

Loosely speaking, Theorem 4.1 states that Algorithm 1 converges to a (first- or second-) order143

stationary point of (1) at the rate of 1/βk, further specified in Sections 4.1 and 4.2. A few remarks144

are in order about Theorem 4.1.145

Regularity. The key geometric condition in Theorem 4.1 is (20) which, broadly speaking, ensures146

that the primal updates of Algorithm 1 reduce the feasibility gap as the penalty weight βk grows. We147

will verify this condition for several examples in Section 6.148

This condition in (20) is closely related to those in the existing literature. In the special case where149

g = 0 in (1), it is easy to verify that (20) reduces to the Polyak-Lojasiewicz (PL) condition for150

minimizing ‖A(x)‖2 [35]. PL condition itself is a special case of Kurdyka-Lojasiewicz with θ = 1/2,151

see [65, Definition 1.1]. When g = 0, it is also easy to see that (20) is weaker than the Mangasarian-152

Fromovitz (MF) condition in nonlinear optimization [12, Assumption 1]. Moreover, when g is153

the indicator on a convex set, (20) is a consequence of the basic constraint qualification in [55],154

which itself generalizes the MF condition to the case when g is an indicator function of a convex155

set. Note:AE: I’m not sure if the claim about basic constraint qualification is true because our156

condition should locally hold rather globally. Could you add the exact equation number in157

[55] and double check this? Also consider double checking other claims in this paragraph.158

Loosely speaking, we may think of (20) as a local condition, which should hold within a neighborhood159

of the constraint set {x : A(x) = 0} rather than everywhere in Rd. There is a constant complexity160

algorithm in [12] to reach this so-called “information zone”, which supplements Theorem 4.1. Lastly,161

in contrast to most conditions in the nonconvex optimization literature, such as [28], the condition162

in (20) appears to be easier to verify, as we see in Section 6.163

AE: the spars review talks about the "Pong-Li" work. Fatih, do you know what is that?164

(mfs:) I do not think this work is relevant to our condition but the template seems similar. We can165

mention in the related works instead. Note:AE: Ok. Yes, consider adding it to the related work.166

Penalty method. A classical algorithm to solve (1) is the penalty method, which is characterized167

by the absence of the dual variable (y = 0) in (7). Indeed, ALM can be interpreted as an adaptive168

penalty or smoothing method with a variable center determined by the dual variable. It is worth noting169

that, with the same proof technique, one can establish the same convergence rate of Theorem 4.1 for170

the penalty method. However, while both methods have the same convergence rate in theory, iALM171

outperforms the penalty method in practice by virtue of its variable center and has been excluded172

from this presentation for this reason.173

Computational complexity. Theorem 4.1 specifies the number of (outer) iterations that Algorithm 1174

requires to reach a near-stationary point of problem (1) with a prescribed precision and, in particular,175

specifies the number of calls made to the solver in Step 2. In this sense, Theorem 4.1 does not176

fully capture the computational complexity of Algorithm 1, as it does not take into account the177

computational cost of the solver in Step 2.178

To better understand the total iteration complexity of Algorithm 1, we consider two scenarios in the179

following. In the first scenario, we take the solver in Step 2 to be the Accelerated Proximal Gradient180

Method (APGM), a well-known first-order algorithm [30]. In the second scenario, we will use the181

second-order trust region method developed in [20].182

4.1 First-Order Optimality183

Let us first consider the case where the solver in Step 2 is is the first-order algorithm APGM, described184

in detail in [30]. At a high level, APGM makes use of ∇xLβ(x, y) in (7), the proximal operator185

proxg , and the classical Nesterov acceleration [45] to reach first-order stationarity for the subproblem186

6

in (8). Suppose that g = δX is the indicator function on a bounded convex set X ⊂ Rd and let187

ρ = max
x∈X
‖x‖, (23)

be the radius of a ball centered at the origin that includes X . Then, adapting the results in [30] to our188

setup, APGM reaches xk in Step 2 of Algorithm 1 after189

O

(
λ2
βk
ρ2

εk+1

)
(24)

(inner) iterations, where λβk
denotes the Lipschitz constant of ∇xLβk

(x, y), bounded in (17). For190

the clarity of the presentation, we have used a looser bound in (24) compared to [30]. Using (24), we191

derive the following corollary, describing the total iteration complexity of Algorithm 1 in terms of the192

number calls made to the first-order oracle in APGM.193

Corollary 4.2 For b > 1, let βk = bk for every k. If we use APGM from [30] for Step 2 of194

Algorithm 1, the algorithm finds an (εf , βk) first-order stationary point, after T calls to the first-order195

oracle, where196

T = O
(
Q3ρ2

ε3
logb

(
Q

ε

))
= Õ

(
Q3ρ2

ε3

)
. (25)

For Algorithm 1 to reach a near-stationary point with an accuracy of εf in the sense of (11) and197

with the lowest computational cost, we therefore need to perform only one iteration of Algorithm 1,198

with β1 specified as a function of εf by (21) in Theorem 4.1. In general, however, the constants in199

(21) are unknown and this approach is thus not feasible. Instead, the homotopy approach taken by200

Algorithm 1 ensures achieving the desired accuracy by gradually increasing the penalty weight.4 This201

homotopy approach increases the computational cost of Algorithm 1 only by a factor logarithmic in202

the εf , as detailed in the proof of Corollary 4.2.203

4.2 Second-Order Optimality204

Let us now consider the second-order optimality case where the solver in Step 2 is the the trust region205

method developed in [20]. Trust region method minimizes a quadratic approximation of the function206

within a dynamically updated trust-region radius. Second-order trust region method that we consider207

in this section makes use of Hessian (or an approximation of Hessian) of the augmented Lagrangian208

in addition to first order oracles.209

As shown in [47], finding approximate second-order stationary points of convex-constrained problems210

is in general NP-hard. For this reason, we focus in this section on the special case of (1) with g = 0.211

Let us compute the total computational complexity of Algorithm 1 with the trust region method in212

Step 2, in terms of the number of calls made to the second-order oracle. By adapting the result in [20]213

to our setup, we find that the number of (inner) iterations required in Step 2 of Algorithm 1 to produce214

xk+1 is215

O

(
λ2
βk,H

(Lβk
(x1, y)−minx Lβk

(x, y))

ε3k

)
, (26)

where λβ,H is the Lipschitz constant of the Hessian of the augmented Lagrangian, which is of the216

order of β, as can be proven similar to Lemma 2.1 and x1 is the initial iterate of the given outer loop.217

In [20], the term Lβ(x1, y)−minx Lβ(x, y) is bounded by a constant independent of ε. We assume218

a uniform bound for this quantity for every βk, instead of for one value of βk as in [20]. Using (26)219

and Theorem 4.1, we arrive at the following:220

Corollary 4.3 For b > 1, let βk = bk for every k. We assume that221

Lβ(x1, y)−min
x
Lβ(x, y) ≤ Lu, ∀β. (27)

If we use the trust region method from [20] for Step 2 of Algorithm 1, the algorithm finds an222

ε-second-order stationary point of (1) in T calls to the second-order oracle where223

T = O
(
LuQ

′5

ε5
logb

(
Q′

ε

))
= Õ

(
LuQ

′5

ε5

)
. (28)

4In this context, homotopy loosely corresponds to the gradual enforcement of the constraints by increasing
the penalty weight.

7

Note:AE: I can’t remember: what is Q′ and why isn’t it defined? Before closing this section, we224

note that the remark after Corollary 4.2 applies here as well.225

5 Related Work226

ALM has a long history in the optimization literature, dating back to [32, 53]. In the special case227

of (1) with a convex function f and a linear operator A, standard, inexact, and linearized versions of228

ALM have been extensively studied [38, 43, 60, 64].229

Classical works on ALM focused on the general template of (1) with nonconvex f and nonlinear A,230

with arguably stronger assumptions and required exact solutions to the subproblems of the form (8),231

which appear in Step 2 of Algorithm 1, see for instance [6].232

A similar analysis was conducted in [26] for the general template of (1). The authors considered233

inexact ALM and proved convergence rates for the outer iterates, under specific assumptions on234

the initialization of the dual variable. However, unlike our results, the authors did not analyze how235

to solve the subproblems inexactly and they did not provide total complexity results and verifiable236

conditions.237

Problem (1) with similar assumptions to us is also studied in [9] and [21] for first-order and second-238

order stationarity, respectively, with explicit iteration complexity analysis. As we have mentioned239

in Section 4, our iteration complexity results matches these theoretical algorithms with a simpler240

algorithm and a simpler analysis. In addition, these algorithms require setting final accuracies241

since they utilize this information in the algorithm. In contrast to [9, 21], Algorithm 1 does not set242

accuracies a priori.243

[19] also considers the same template (1) for first-order stationarity with a penalty-type method244

instead of ALM. Even though the authors show O(1/ε2) complexity, this result is obtained by245

assuming that the penalty parameter remains bounded. We note that such an assumption can also be246

used to match our complexity results.247

[12] studies the general template (1) with specific assumptions involving local error bound conditions248

for the (1). These conditions are studied in detail in [11], but their validity for general SDPs (2) has249

never been established. This work also lacks the total iteration complexity analysis presented here.250

Another work [24] focused on solving (1) by adapting the primal-dual method of Chambolle and251

Pock [22]. The authors proved the convergence of the method and provided convergence rate by252

imposing error bound conditions on the objective function that do not hold for standard SDPs.253

[16, 17] is the first work that proposes the splitting X = UU> for solving SDPs of the form (2).254

Following these works, the literature on Burer-Monteiro (BM) splitting for the large part focused on255

using ALM for solving the reformulated problem (3).256

However, this approach has a few drawbacks: First, it requires exact solutions in Step 2 of Algo-257

rithm 1 in theory, which in practice is replaced with inexact solutions. Second, their results only258

establish convergence without providing the rates. In this sense, our work provides a theoretical259

understanding of the BM splitting with inexact solutions to Step 2 of Algorithm 1 and complete260

iteration complexities.261

[8, 50] are among the earliest efforts to show convergence rates for BM splitting, focusing on262

the special case of SDPs without any linear constraints. For these specific problems, they prove263

the convergence of gradient descent to global optima with convergence rates, assuming favorable264

initialization. These results, however, do not apply to general SDPs of the form (2) where the difficulty265

arises due to the linear constraints.266

[7] focused on the quadratic penalty formulation of (1), namely,267

min
X�0
〈C,X〉+

µ

2
‖B(x)− b‖2, (29)

which after BM splitting becomes268

min
U∈Rd×r

〈C,UU>〉+
µ

2
‖B(UU>)− b‖2, (30)

8

for which they study the optimality of the second-order stationary points. These results are for269

establishing a connection between the stationary points of (30) and global optima of (29). In contrast,270

we focus on the relation of the stationary points of (6) to the constrained problem (1).271

Another popular method for solving SDPs are due to [14, 13, 15], focusing on the case where the272

constraints in (1) can be written as a Riemannian manifold after BM splitting. In this case, the authors273

apply the Riemannian gradient descent and Riemannian trust region methods for obtaining first- and274

second-order stationary points, respectively. They obtain O(1/ε2) complexity for finding first-order275

stationary points and O(1/ε3) complexity for finding second-order stationary points.276

While these complexities appear better than ours, the smooth manifold requirement in these works277

is indeed restrictive. In particular, this requirement holds for max-cut and generalized eigenvalue278

problems, but it is not satisfied for other important SDPs such as quadratic programming (QAP),279

optimal power flow and clustering with general affine constraints. In addition, as noted in [13], per280

iteration cost of their method for max-cut problem is an astronomical O(d6).281

Lastly, there also exists a line of work for solving SDPs in their original convex formulation, in a282

storage efficient way [44, 67, 68]. These works have global optimality guarantees by their virtue of283

directly solving the convex formulation. On the downside, these works require the use of eigenvalue284

routines and exhibit significantly slower convergence as compared to nonconvex approaches [34].285

6 Numerical Evidence286

We first begin with a caveat: It is known that quasi-Newton methods, such as BFGS and lBFGS,287

might not converge for nonconvex problems [25, 40]. For this reason, we have used the trust region288

method as the second-order solver in our analysis in Section 4, which is well-studied for nonconvex289

problems [20]. Empirically, however, BFGS and lBGFS are extremely successful and we have290

therefore opted for those solvers in this section since the subroutine does not affect Theorem 4.1 as291

long as the subsolver performs well in practice.292

6.1 Clustering293

Given data points {zi}ni=1, the entries of the corresponding Euclidean distance matrix D ∈ Rn×n294

are Di,j = ‖zi − zj‖2. Clustering is then the problem of finding a co-association matrix Y ∈ Rn×n295

such that Yij = 1 if points zi and zj are within the same cluster and Yij = 0 otherwise. In [52], the296

authors provide a SDP relaxation of the clustering problem, specified as297 {
min

Y ∈Rnxn
tr(DY)

Y 1 = 1, tr(Y) = s, Y � 0, Y ≥ 0,
(31)

where s is the number of clusters and Y is both positive semidefinite and has nonnegative entries.298

Standard SDP solvers do not scale well with the number of data points n, since they often require299

projection onto the semidefinite cone with the complexity of O(n3). We instead use the BM300

factorization to solve (31), sacrificing convexity to reduce the computational complexity. More301

specifically, we solve the program302 {
min

V ∈Rn×r
tr(DV V >)

V V >1 = 1, ‖V ‖2F ≤ s, V ≥ 0,
(32)

where 1 ∈ Rn is the vector of all ones. Note that Y ≥ 0 in (31) is replaced above by the much303

stronger but easier-to-enforce constraint V ≥ 0 in (32), see [37] for the reasoning behind this304

relaxation. Now, we can cast (32) as an instance of (1). Indeed, for every i ≤ n, let xi ∈ Rr denote305

the ith row of V . We next form x ∈ Rd with d = nr by expanding the factorized variable V , namely,306

x = [x>1 , · · · , x>n]> ∈ Rd,

and then set307

f(x) =

n∑
i,j=1

Di,j 〈xi, xj〉 , g = δC ,

9

10
0

10
1

10
2

10
-10

10
-5

10
0

10
1

10
2

10
3

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 1: Convergence of different algorithms for k-Means clustering with fashion MNIST dataset.
The solution rank for the template (31) is known and it is equal to number of clusters k (Theorem 1.
[37]). As discussed in [59], setting rank r > k leads more accurate reconstruction in expense of
speed. Therefore, we set the rank to 20.

308

A(x) = [x>1

n∑
j=1

xj − 1, · · · , x>n
n∑
j=1

xj − 1]>, (33)

where C is the intersection of the positive orthant in Rd with the Euclidean ball of radius
√
s. In309

Appendix D, we somewhat informally verify that Theorem 4.1 applies to (1) with f, g, A specified310

above.311

In our simulations, we use two different solvers for Step 2 of Algorithm 1, namely, APGM and312

lBFGS. APGM is a solver for nonconvex problems of the form (8) with convergence guarantees313

to first-order stationarity, as discussed in Section 4. lBFGS is a limited-memory version of BFGS314

algorithm in [27] that approximately leverages the second-order information of the problem. We315

compare our approach against the following convex methods:316

• HCGM: Homotopy-based Conditional Gradient Method in [68] which directly solves (31).317

• SDPNAL+: A second-order augmented Lagrangian method for solving SDP’s with nonneg-318

ativity constraints [66].319

As for the dataset, our experimental setup is similar to that described by [41]. We use the publicly-320

available fashion-MNIST data in [63], which is released as a possible replacement for the MNIST321

handwritten digits. Each data point is a 28× 28 gray-scale image, associated with a label from ten322

classes, labeled from 0 to 9. First, we extract the meaningful features from this dataset using a simple323

two-layer neural network with a sigmoid activation function. Then, we apply this neural network to324

1000 test samples from the same dataset, which gives us a vector of length 10 for each data point,325

where each entry represents the posterior probability for each class. Then, we form the `2 distance326

matrix D from these probability vectors. The results are depicted in Figure 1. We implemented 3327

algorithms on MATLAB and used the software package for SDPNAL+ which contains mex files. It is328

predictable that the performance of our nonconvex approach would even improve by using mex files.329

6.2 Basis Pursuit330

Basis Pursuit (BP) finds sparsest solutions of an under-determined system of linear equations by331

solving332 {
minz ‖z‖1
Bz = b,

(34)

where B ∈ Rn×d and b ∈ Rn. BP has found many applications in machine learning, statistics and333

signal processing [23, 18, 1]. Various primal-dual convex optimization algorithms are available in334

10

the literature to solve BP, including [60, 22]. We compare our algorithm against state-of-the-art335

primal-dual convex methods for solving (34), namely, Chambole-Pock [22], ASGARD [61] and336

ASGARD-DL [60].337

Here, we take a different approach and cast (34) as an instance of (1). Note that any z ∈ Rd338

can be decomposed as z = z+ − z−, where z+, z− ∈ Rd are the positive and negative parts of339

z, respectively. Then consider the change of variables z+ = u◦21 and z− = u◦22 ∈ Rd, where ◦340

denotes element-wise power. Next, we concatenate u1 and u2 as x := [u>1 , u
>
2]> ∈ R2d and define341

B := [B,−B] ∈ Rn×2d. Then, (34) is equivalent to (1) with342

f(x) =‖x‖2, g(x) = 0,

A(x) =Bx◦2 − b. (35)

In Appendix E, we verify with minimal details that Theorem 4.1 indeed applies to (1) with the above343

f,A.344

We draw the entries of B independently from a zero-mean and unit-variance Gaussian distribution.345

For a fixed sparsity level k, the support of z∗ ∈ Rd and its nonzero amplitudes are also drawn from346

the standard Gaussian distribution. Then the measurement vector is created as b = Bz + ε, where ε347

is the noise vector with entries drawn independently from the zero-mean Gaussian distribution with348

variance σ2 = 10−6.349

10
0

10
1

10
2

10
3

10
4

10
-10

10
0

10
0

10
1

10
2

10
3

10
4

10
-10

10
0

Figure 2: Convergence with different subsolvers for the aforementioned nonconvex relaxation.

The results are compiled in Figure 2. Clearly, the performance of Algorithm 1 with a second-order350

solver for BP is comparable to the rest. It is, indeed, interesting to see that these type of nonconvex351

relaxations gives the solution of convex one and first order methods succeed.352

Discussion: The true potential of our reformulation is in dealing with more structured norms rather353

than `1, where computing the proximal operator is often intractable. One such case is the latent group354

lasso norm [48], defined as355

‖z‖Ω =

I∑
i=1

‖zΩi
‖,

where {Ωi}Ii=1 are (not necessarily disjoint) index sets of {1, · · · , d}. Although not studied here, we356

believe that the nonconvex framework presented in this paper can serve to solve more complicated357

problems, such as the latent group lasso. We leave this research direction for future work.358

References359

[1] S. Arora, M. Khodak, N. Saunshi, and K. Vodrahalli. A compressed sensing view of unsuper-360

vised text embeddings, bag-of-n-grams, and lstms. 2018.361

[2] A. I. Barvinok. Problems of distance geometry and convex properties of quadratic maps.362

Discrete & Computational Geometry, 13(2):189–202, 1995.363

11

[3] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse364

problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.365

[4] D. P. Bertsekas. On penalty and multiplier methods for constrained minimization. SIAM Journal366

on Control and Optimization, 14(2):216–235, 1976.367

[5] D. P. Bertsekas. Constrained optimization and lagrange multiplier methods. Computer Science368

and Applied Mathematics, Boston: Academic Press, 1982, 1982.369

[6] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press,370

2014.371

[7] S. Bhojanapalli, N. Boumal, P. Jain, and P. Netrapalli. Smoothed analysis for low-rank solutions372

to semidefinite programs in quadratic penalty form. arXiv preprint arXiv:1803.00186, 2018.373

[8] S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi. Dropping convexity for faster semi-definite374

optimization. In Conference on Learning Theory, pages 530–582, 2016.375

[9] E. G. Birgin, J. Gardenghi, J. M. Martinez, S. Santos, and P. L. Toint. Evaluation complexity376

for nonlinear constrained optimization using unscaled kkt conditions and high-order models.377

SIAM Journal on Optimization, 26(2):951–967, 2016.378

[10] E. G. Birgin and J. M. Mart_nez. Practical augmented Lagrangian methods for constrained379

optimization, volume 10. SIAM, 2014.380

[11] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds to the complexity of381

first-order descent methods for convex functions. Mathematical Programming, 165(2):471–507,382

2017.383

[12] J. Bolte, S. Sabach, and M. Teboulle. Nonconvex lagrangian-based optimization: monitoring384

schemes and global convergence. Mathematics of Operations Research, 2018.385

[13] N. Boumal, P.-A. Absil, and C. Cartis. Global rates of convergence for nonconvex optimization386

on manifolds. arXiv preprint arXiv:1605.08101, 2016.387

[14] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a matlab toolbox for optimization388

on manifolds. The Journal of Machine Learning Research, 15(1):1455–1459, 2014.389

[15] N. Boumal, V. Voroninski, and A. Bandeira. The non-convex burer-monteiro approach works on390

smooth semidefinite programs. In Advances in Neural Information Processing Systems, pages391

2757–2765, 2016.392

[16] S. Burer and R. D. Monteiro. A nonlinear programming algorithm for solving semidefinite393

programs via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.394

[17] S. Burer and R. D. Monteiro. Local minima and convergence in low-rank semidefinite program-395

ming. Mathematical Programming, 103(3):427–444, 2005.396

[18] E. J. Candès and M. B. Wakin. An introduction to compressive sampling. IEEE signal processing397

magazine, 25(2):21–30, 2008.398

[19] C. Cartis, N. I. Gould, and P. L. Toint. On the evaluation complexity of composite func-399

tion minimization with applications to nonconvex nonlinear programming. SIAM Journal on400

Optimization, 21(4):1721–1739, 2011.401

[20] C. Cartis, N. I. Gould, and P. L. Toint. Complexity bounds for second-order optimality in402

unconstrained optimization. Journal of Complexity, 28(1):93–108, 2012.403

[21] C. Cartis, N. I. Gould, and P. L. Toint. Optimality of orders one to three and beyond: characteri-404

zation and evaluation complexity in constrained nonconvex optimization. Journal of Complexity,405

2018.406

[22] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with407

applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.408

12

[23] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM409

review, 43(1):129–159, 2001.410

[24] C. Clason, S. Mazurenko, and T. Valkonen. Acceleration and global convergence of a first-order411

primal–dual method for nonconvex problems. arXiv preprint arXiv:1802.03347, 2018.412

[25] Y.-H. Dai. Convergence properties of the bfgs algoritm. SIAM Journal on Optimization,413

13(3):693–701, 2002.414

[26] D. Fernandez and M. V. Solodov. Local convergence of exact and inexact augmented lagrangian415

methods under the second-order sufficient optimality condition. SIAM Journal on Optimization,416

22(2):384–407, 2012.417

[27] R. Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.418

[28] F. Flores-Bazán, F. Flores-Bazán, and C. Vera. A complete characterization of strong duality in419

nonconvex optimization with a single constraint. Journal of Global Optimization, 53(2):185–420

201, 2012.421

[29] R. Ge, C. Jin, P. Netrapalli, A. Sidford, et al. Efficient algorithms for large-scale generalized422

eigenvector computation and canonical correlation analysis. In International Conference on423

Machine Learning, pages 2741–2750, 2016.424

[30] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic425

programming. Mathematical Programming, 156(1-2):59–99, 2016.426

[31] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,427

and Y. Bengio. Generative Adversarial Networks. ArXiv e-prints, June 2014.428

[32] M. R. Hestenes. Multiplier and gradient methods. Journal of optimization theory and applica-429

tions, 4(5):303–320, 1969.430

[33] A. Ilyas, A. Jalal, E. Asteri, C. Daskalakis, and A. G. Dimakis. The Robust Manifold Defense:431

Adversarial Training using Generative Models. arXiv e-prints, page arXiv:1712.09196, Dec.432

2017.433

[34] M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML (1),434

pages 427–435, 2013.435

[35] H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient436

methods under the polyak-łojasiewicz condition. In Joint European Conference on Machine437

Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.438

[36] S. Khot and A. Naor. Grothendieck-type inequalities in combinatorial optimization. arXiv439

preprint arXiv:1108.2464, 2011.440

[37] B. Kulis, A. C. Surendran, and J. C. Platt. Fast low-rank semidefinite programming for441

embedding and clustering. In Artificial Intelligence and Statistics, pages 235–242, 2007.442

[38] G. Lan and R. D. Monteiro. Iteration-complexity of first-order augmented lagrangian methods443

for convex programming. Mathematical Programming, 155(1-2):511–547, 2016.444

[39] L. Lovász. Semidefinite programs and combinatorial optimization. In Recent advances in445

algorithms and combinatorics, pages 137–194. Springer, 2003.446

[40] W. F. Mascarenhas. The bfgs method with exact line searches fails for non-convex objective447

functions. Mathematical Programming, 99(1):49–61, 2004.448

[41] D. G. Mixon, S. Villar, and R. Ward. Clustering subgaussian mixtures by semidefinite program-449

ming. arXiv preprint arXiv:1602.06612, 2016.450

[42] E. Mossel, J. Neeman, and A. Sly. Consistency thresholds for the planted bisection model. In451

Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pages 69–75.452

ACM, 2015.453

13

[43] V. Nedelcu, I. Necoara, and Q. Tran-Dinh. Computational complexity of inexact gradient454

augmented lagrangian methods: application to constrained mpc. SIAM Journal on Control and455

Optimization, 52(5):3109–3134, 2014.456

[44] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,457

120(1):221–259, 2009.458

[45] Y. E. Nesterov. A method for solving the convex programming problem with convergence rate459

o (1/kˆ 2). In Dokl. Akad. Nauk SSSR, volume 269, pages 543–547, 1983.460

[46] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research and461

Financial Engineering. Springer New York, 2006.462

[47] M. Nouiehed, J. D. Lee, and M. Razaviyayn. Convergence to second-order stationarity for463

constrained non-convex optimization. arXiv preprint arXiv:1810.02024, 2018.464

[48] G. Obozinski, L. Jacob, and J.-P. Vert. Group lasso with overlaps: the latent group lasso465

approach. arXiv preprint arXiv:1110.0413, 2011.466

[49] N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations and Trends in Optimization,467

1(3):127–239, 2014.468

[50] D. Park, A. Kyrillidis, S. Bhojanapalli, C. Caramanis, and S. Sanghavi. Provable burer-monteiro469

factorization for a class of norm-constrained matrix problems. arXiv preprint arXiv:1606.01316,470

2016.471

[51] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of472

optimal eigenvalues. Mathematics of operations research, 23(2):339–358, 1998.473

[52] J. Peng and Y. Wei. Approximating K–means–type clustering via semidefinite programming.474

SIAM J. Optim., 18(1):186–205, 2007.475

[53] M. J. Powell. A method for nonlinear constraints in minimization problems. Optimization,476

pages 283–298, 1969.477

[54] P. Raghavendra. Optimal algorithms and inapproximability results for every csp? In Proceedings478

of the fortieth annual ACM symposium on Theory of computing, pages 245–254. ACM, 2008.479

[55] R. T. Rockafellar. Lagrange multipliers and optimality. SIAM review, 35(2):183–238, 1993.480

[56] A. Singer. Angular synchronization by eigenvectors and semidefinite programming. Applied481

and computational harmonic analysis, 30(1):20, 2011.482

[57] A. Singer and Y. Shkolnisky. Three-dimensional structure determination from common lines in483

cryo-em by eigenvectors and semidefinite programming. SIAM journal on imaging sciences,484

4(2):543–572, 2011.485

[58] L. Song, A. Smola, A. Gretton, and K. M. Borgwardt. A dependence maximization view of486

clustering. In Proceedings of the 24th international conference on Machine learning, pages487

815–822. ACM, 2007.488

[59] M. Tepper, A. M. Sengupta, and D. Chklovskii. Clustering is semidefinitely not that hard:489

Nonnegative sdp for manifold disentangling. Journal of Machine Learning Research, 19(82),490

2018.491

[60] Q. Tran-Dinh, A. Alacaoglu, O. Fercoq, and V. Cevher. An adaptive primal-dual framework for492

nonsmooth convex minimization. arXiv preprint arXiv:1808.04648, 2018.493

[61] Q. Tran-Dinh, O. Fercoq, and V. Cevher. A smooth primal-dual optimization framework for494

nonsmooth composite convex minimization. SIAM Journal on Optimization, 28(1):96–134,495

2018.496

[62] I. Waldspurger and A. Waters. Rank optimality for the burer-monteiro factorization. arXiv497

preprint arXiv:1812.03046, 2018.498

14

[63] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking499

machine learning algorithms, 2017.500

[64] Y. Xu. Iteration complexity of inexact augmented lagrangian methods for constrained convex501

programming. arXiv preprint arXiv:1711.05812v2, 2017.502

[65] Y. Xu and W. Yin. A globally convergent algorithm for nonconvex optimization based on block503

coordinate update. Journal of Scientific Computing, 72(2):700–734, 2017.504

[66] L. Yang, D. Sun, and K.-C. Toh. Sdpnal+: a majorized semismooth newton-cg augmented505

lagrangian method for semidefinite programming with nonnegative constraints. Mathematical506

Programming Computation, 7(3):331–366, 2015.507

[67] A. Yurtsever, Q. T. Dinh, and V. Cevher. A universal primal-dual convex optimization framework.508

In Advances in Neural Information Processing Systems, pages 3150–3158, 2015.509

[68] A. Yurtsever, O. Fercoq, F. Locatello, and V. Cevher. A conditional gradient framework for510

composite convex minimization with applications to semidefinite programming. arXiv preprint511

arXiv:1804.08544, 2018.512

[69] Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for513

the quadratic assignment problem. Journal of Combinatorial Optimization, 2(1):71–109, 1998.514

15

A Proof of Theorem 4.1515

For every k ≥ 2, recall from (7) and Step 2 of Algorithm 1 that xk satisfies516

dist(−∇f(xk)−DA(xk)>yk−1

− βk−1DA(xk)>A(xk), ∂g(xk))

= dist(−∇xLβk−1
(xk, yk−1), ∂g(xk)) ≤ εk. (36)

With an application of the triangle inequality, it follows that517

dist(−βk−1DA(xk)>A(xk), ∂g(xk))

≤ ‖∇f(xk)‖+ ‖DA(xk)>yk−1‖+ εk, (37)

which in turn implies that518

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1)

≤ ‖∇f(xk)‖
βk−1

+
‖DA(xk)>yk−1‖

βk−1
+

εk
βk−1

≤
λ′f + λ′A‖yk−1‖+ εk

βk−1
, (38)

where λ′f , λ
′
A were defined in (19). We next translate (38) into a bound on the feasibility gap ‖A(xk)‖.519

Using the regularity condition (20), the left-hand side of (38) can be bounded below as520

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1) ≥ ν‖A(xk)‖. (see (20)) (39)

By substituting (39) back into (38), we find that521

‖A(xk)‖ ≤
λ′f + λ′A‖yk−1‖+ εk

νβk−1
. (40)

In words, the feasibility gap is directly controlled by the dual sequence {yk}k. We next establish that522

the dual sequence is bounded. Indeed, for every k ∈ K, note that523

‖yk‖ = ‖y0 +

k∑
i=1

σiA(xi)‖ (Step 5 of Algorithm 1)

≤ ‖y0‖+

k∑
i=1

σi‖A(xi)‖ (triangle inequality)

≤ ‖y0‖+

k∑
i=1

‖A(x1)‖ log2 2

k log2(k + 1)
(Step 4)

≤ ‖y0‖+ c‖A(x1)‖ log2 2 =: ymax, (41)

where524

c ≥
∞∑
i=1

1

k log2(k + 1)
. (42)

Substituting (41) back into (40), we reach525

‖A(xk)‖ ≤
λ′f + λ′Aymax + εk

νβk−1

≤
2λ′f + 2λ′Aymax

νβk−1
, (43)

where the second line above holds if k0 is large enough, which would in turn guarantees that526

εk = 1/βk−1 is sufficiently small since {βk}k is increasing and unbounded. It remains to control527

16

the first term in (12). To that end, after recalling Step 2 of Algorithm 1 and applying the triangle528

inequality, we can write that529

dist(−∇xLβk−1
(xk, yk), ∂g(xk))

≤ dist(−∇xLβk−1
(xk, yk−1), ∂g(xk))

+ ‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖. (44)

The first term on the right-hand side above is bounded by εk, by Step 5 of Algorithm 1. For the530

second term on the right-hand side of (44), we write that531

‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖
= ‖DA(xk)>(yk − yk−1)‖ (see (7))

≤ λ′A‖yk − yk−1‖ (see (19))

= λ′Aσk‖A(xk)‖ (see Step 5 of Algorithm 1)

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax). (see (43)) (45)

By combining (44,45), we find that532

dist(∇xLβk−1
(xk, yk), ∂g(xk))

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk. (46)

By combining (43,46), we find that533

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤
(

2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk

)
+ 2

(
λ′f + λ′Aymax

νβk−1

)
. (47)

Applying σk ≤ σ1, we find that534

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤ 2λ′Aσ1 + 2

νβk−1
(λ′f + λ′Aymax) + εk. (48)

For the second part of the theorem, we use the Weyl’s inequality and Step 5 of Algorithm 1 to write535

λmin(∇xxLβk−1
(xk, yk−1)) ≥ λmin(∇xxLβk−1

(xk, yk))

− σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖. (49)

The first term on the right-hand side is lower bounded by −εk−1 by Step 2 of Algorithm 1. We next536

bound the second term on the right-hand side above as537

σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖

≤ σk
√
mmax

i
‖Ai(xk)‖‖∇2Ai(xk)‖

≤ σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

where the last inequality is due to (5,43). Plugging into (49) gives538

λmin(∇xxLβk−1
(xk, yk−1))

≥ −εk−1 − σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

which completes the proof of Theorem 4.1.539

17

B Proof of Corollary 4.2540

Let K denote the number of (outer) iterations of Algorithm 1 and let εf denote the desired accuracy541

of Algorithm 1, see (11). Recalling Theorem 4.1, we can then write that542

εf =
Q

βK
, (50)

or, equivalently, βK = Q/εf . We now count the number of total (inner) iterations T of Algorithm 1543

to reach the accuracy εf . From (17) and for sufficiently large k, recall that λβk
≤ λ′′βk is the544

smoothness parameter of the augmented Lagrangian. Then, from (24) ad by summing over the outer545

iterations, we bound the total number of (inner) iterations of Algorithm 1 as546

T =

K∑
k=1

O

(
λ2
βk−1

ρ2

εk

)

=

K∑
k=1

O
(
β3
k−1ρ

2
)

(Step 1 of Algorithm 1)

≤ O
(
Kβ3

K−1ρ
2
)

({βk}k is increasing)

≤ O

(
KQ3ρ2

ε3f

)
. (see (50)) (51)

In addition, if we specify βk = bk for all k, we can further refine T . Indeed,547

βK = bK =⇒ K = logb

(
Q

εf

)
, (52)

which, after substituting into (51) gives the final bound in Corollary 4.2.548

C Proof of Lemma 2.1549

Note that550

Lβ(x, y) = f(x) +

m∑
i=1

yiAi(x) +
β

2

m∑
i=1

(Ai(x))2, (53)

which implies that551

∇xLβ(x, y)

= ∇f(x) +

m∑
i=1

yi∇Ai(x) +
β

2

m∑
i=1

Ai(x)∇Ai(x)

= ∇f(x) +DA(x)>y + βDA(x)>A(x), (54)

where DA(x) is the Jacobian of A at x. By taking another derivative with respect to x, we reach552

∇2
xLβ(x, y) = ∇2f(x) +

m∑
i=1

(yi + βAi(x))∇2Ai(x)

+ β

m∑
i=1

∇Ai(x)∇Ai(x)>. (55)

It follows that553

‖∇2
xLβ(x, y)‖

≤ ‖∇2f(x)‖+ max
i
‖∇2Ai(x)‖ (‖y‖1 + β‖A(x)‖1)

+ β

m∑
i=1

‖∇Ai(x)‖2

≤ λh +
√
mλA (‖y‖+ β‖A(x)‖) + β‖DA(x)‖2F . (56)

18

For every x such that ‖x‖ ≤ ρ and ‖A(x)‖ ≤ ρ, we conclude that554

‖∇2
xLβ(x, y)‖ ≤ λf +

√
mλA (‖y‖+ βρ′) + β max

‖x‖≤ρ
‖DA(x)‖2F , (57)

which completes the proof of Lemma 2.1.555

D Clustering556

We only verify the condition in (20) here. Note that557

A(x) = V V >1− 1, (58)
558

DA(x) =

 w1,1x
>
1 · · · w1,nx

>
1

...
wn,1x

>
n · · · wn,n1x>n


= [V · · · V] +

 x>1
. . .

x>n

 , (59)

where wi.i = 2 and wi,j = 1 for i 6= j. In the last line above, n copies of V appear and the last559

matrix above is block-diagonal. For xk, define Vk accordingly and let xk,i be the ith row of Vk.560

Consequently,561

DA(xk)>A(xk) =

 (V >k Vk − In)V >k 1
...

(V >k Vk − In)V >k 1


+

 xk,1(VkV
>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n

 , (60)

where In ∈ Rn×n is the identity matrix. Let us make a number of simplifying assumptions. First, we562

assume that ‖xk‖ <
√
s (which can be enforced in the iterates by replacing C with (1− ε)C for a563

small positive ε in the subproblems). Under this assumption, it follows that564

(∂g(xk))i =

{
0 (xk)i > 0

{a : a ≤ 0} (xk)i = 0,
i ≤ d. (61)

Second, we assume that Vk has nearly orthonormal columns, namely, V >k Vk ≈ In. This can also be565

enforced in each iterate of Algorithm 1 and naturally corresponds to well-separated clusters. While a566

more fine-tuned argument can remove these assumptions, they will help us simplify the presentation567

here. Under these assumptions, the (squared) right-hand side of (20) becomes568

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

=
∥∥∥(−DA(xk)>A(xk)

)
+

∥∥∥2

(a+ = max(a, 0))

=

∥∥∥∥∥∥∥
 xk,1(VkV

>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n


∥∥∥∥∥∥∥

2

(xk ∈ C ⇒ xk ≥ 0)

=

n∑
i=1

‖xk,i‖2(VkV
>
k 1− 1)2

i

≥ min
i
‖xk,i‖2 ·

n∑
i=1

(VkV
>
k 1− 1)2

i

= min
i
‖xk,i‖2 · ‖VkV >k 1− 1‖2. (62)

19

Therefore, given a prescribed ν, ensuring mini ‖xk,i‖ ≥ ν guarantees (20). When the algorithm569

is initialized close enough to the constraint set, there is indeed no need to separately enforce (62).570

In practice, often n exceeds the number of true clusters and a more intricate analysis is required to571

establish (20) by restricting the argument to a particular subspace of Rn.572

E Basis Pursuit573

We only verify the regularity condition in (20) for (1) with f,A, g specified in (35). Note that574

DA(x) = 2Bdiag(x), (63)

where diag(x) ∈ R2d×2d is the diagonal matrix formed by x. The left-hand side of (20) then reads as575

dist
(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
= dist

(
−DA(xk)>A(xk), {0}

)
(g ≡ 0)

= ‖DA(xk)>A(xk)‖

= 2‖diag(xk)B
>

(Bx◦2k − b)‖. (see (63)) (64)

To bound the last line above, let x∗ be a solution of (1) and note that Bx◦2∗ = b by definition. Let also576

zk, z∗ ∈ Rd denote the vectors corresponding to xk, x∗. Corresponding to xk, also define uk,1, uk,2577

naturally and let |zk| = u◦2k,1 + u◦2k,2 ∈ Rd be the vector of amplitudes of zk. To simplify matters, let578

us assume also that B is full-rank. We then rewrite the norm in the last line of (64) as579

‖diag(xk)B
>

(Bx◦2k − b)‖2

= ‖diag(xk)B
>
B(x◦2k − x◦2∗)‖2 (Bx◦2∗ = b)

= ‖diag(xk)B
>
B(xk − x∗)‖2

= ‖diag(uk,1)B>B(zk − z∗)‖2

+ ‖diag(uk,2)B>B(zk − z∗)‖2

= ‖diag(u◦2k,1 + u◦2k,2)B>B(zk − z∗)‖2

= ‖diag(|zk|)B>B(zk − z∗)‖2

≥ ηn(Bdiag(|zk|))2‖B(zk − z∗)‖2

= ηn(Bdiag(|zk|))2‖Bzk − b‖2 (Bz∗ = Bx◦2∗ = b)

≥ min
|T |=n

ηn(BT) · |zk,(n)|2‖Bzk − b‖2, (65)

where ηn(·) returns the nth largest singular value of its argument. In the last line above, BT is the580

restriction of B to the columns indexed by T of size n. Moreover, zk,(n) is the nth largest entry of z581

in magnitude. Given a prescribed ν, (20) therefore holds if582

|zk,(n)| ≥
ν

2
√

min|T |=n ηn(BT)
, (66)

for every iteration k. If Algorithm 1 is initialized close enough to the solution z∗ and the entries of583

z∗ are sufficiently large in magnitude, there will be no need to directly enforce (66).584

E.1 `∞ Denoising with a Generative Prior585

(mfs): We need Fabian’s input here.586

The authors of [33] have proposed to project onto the range of a Generative Adversarial network587

(GAN) [31], as a way to defend against adversarial examples. For a given noisy observation x∗ + η,588

they consider a projection in the `2 norm. We instead propose to use our augmented Lagrangian589

method to denoise in the `∞ norm, a much harder task:590

min
x,z

‖x∗ + η − x‖∞
s.t. x = G(z).

(67)

20

Figure 3: Augmented Lagrangian vs Adam for `∞ denoising (left). `2 vs `∞ denoising as defense
against adversarial examples

We use a pretrained generator for the MNIST dataset, given by a standard deconvolutional neural591

network architecture. We compare the succesful optimizer Adam against our method. Our algorithm592

involves two forward/backward passes through the network, as oposed to Adam that requires only593

one. For this reason we let our algorithm run for 4000 iterations, and Adam for 8000 iterations.594

For a particular example, we plot the objective value vs iteration count in figure E.1. Our method595

successfully minimizes the objective value, while Adam does not succeed.596

E.2 Generalized Eigenvalue Problem597

Generalized eigenvalue problem has extensive applications in machine learning, statistics and data598

analysis [29]. The well-known nonconvex formulation of the problem is [15] given by599 {
min
x∈Rn

x>Cx

x>Bx = 1,
(68)

where B,C ∈ Rn×n are symmetric matrices and B is positive definite, namely, B � 0. The600

generalized eigenvector computation is equivalent to performing principal component analysis (PCA)601

of C in the norm B. It is also equivalent to computing the top eigenvector of symmetric matrix602

S = B−1/2CB1/2 and multiplying the resulting vector by B−1/2. However, for large values of n,603

computing B−1/2 is extremely expensive. The natural convex SDP relaxation for (68) involves lifting604

Y = xx> and removing the nonconvex rank(Y) = 1 constraint, namely,605 {
min

Y ∈Rn×n
tr(CY)

tr(BY) = 1, X � 0.
(69)

Here, however, we opt to directly solve (68) because it fits into our template with606

f(x) =x>Cx, g(x) = 0,

A(x) =x>Bx− 1. (70)

We compare our approach against three different methods: manifold based Riemannian gradient607

descent and Riemannian trust region methods in [13] and the linear system solver in [29], abbrevated608

as GenELin. We have used Manopt software package in [?] for the manifold based methods. For609

GenELin, we have utilized Matlab’s backslash operator as the linear solver. The results are compiled610

in Figure 4.611

Here, we verify the regularity condition in (20) for problem (68). Note that612

DA(x) = (2Bx)>. (71)

21

(i) C : Gaussian iid (ii) C : Polynomial decay (iii) C : Exponential decay

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
-10

10
-5

10
0

0 200 400 600 800 1000

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

(iv) (v) (vi)

10
-1

10
0

10
1

10
-15

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
2

10
-10

10
-5

10
0

0 200 400 600 800 1000

-0.05

0

0.05

0.1

0 200 400 600 800 1000

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 200 400 600 800 1000

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure 4: (Top) Objective convergence for calculating top generalized eigenvalue and eigenvector ofB
and C. (Bottom) Eigenvalue structure of the matrices. For (i),(ii) and (iii), C is positive semidefinite;
for (iv), (v) and (vi), C contains negative eigenvalues. [(i): Generated by taking symmetric part of
iid Gaussian matrix. (ii): Generated by randomly rotating diag(1−p, 2−p, · · · , 1000−p)(p = 1). (iii):
Generated by randomly rotating diag(10−p, 10−2p, · · · , 10−1000p)(p = 0.0025).]

Therefore,613

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

= dist
(
−DA(xk)>A(xk), {0}

)2
(g ≡ 0)

= ‖DA(xk)>A(xk)‖2

= ‖2Bxk(x>k Bxk − 1)‖2 (see (71))

= 4(x>k Bxk − 1)2‖Bxk‖2

= 4‖Bxk‖2‖A(xk)‖2 (see (70))

≥ ηmin(B)2‖xk‖2‖A(xk)‖2, (72)

where ηmin(B) is the smallest eigenvalue of the positive definite matrixB. Therefore, for a prescribed614

ν, the regularity condition in (20) holds with ‖xk‖ ≥ ν/ηmin for every k. If the algorithm is initialized615

close enough to the constraint set, there will be again no need to directly enforce this latter condition.616

22

	Introduction
	Preliminaries
	Algorithm
	Convergence Rate
	First-Order Optimality
	Second-Order Optimality

	Related Work
	Numerical Evidence
	Clustering
	Basis Pursuit

	Proof of Theorem 4.1
	Proof of Corollary 4.2
	Proof of Lemma 2.1
	Clustering
	Basis Pursuit
	 Denoising with a Generative Prior
	Generalized Eigenvalue Problem

