
Inexact Augmented Lagrangian Framework for
Non-Convex Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

We propose a practical inexact augmented Lagrangian method (iALM) for noncon-1

vex problems with nonlinear constrains. We characterize the total computational2

complexity of our method subject to a verifiable geometric condition, which is3

closely related to the Polyak-Lojsiewicz and Mangasarian-Fromowitz conditions.4

In particular, when a first-order solver is used for the inner iterates, we prove that5

iALM finds a first-order stationary point with Õ(1/ε3) calls to the first-order oracle.6

If, in addition, the problem is smooth and a second-order solver is used for the7

inner iterates, iALM finds a second-order stationary point with Õ(1/ε5) calls to8

the second-order oracle. These complexity results match the known theoretical9

results in the literature with a simple, implementable and versatile algorithm.10

We provide numerical evidence on large-scale machine learning problems, in-11

cluding the Burer-Monteiro factorization of semidefinite programs, and a novel12

nonconvex relaxation of the standard basis pursuit template. We verify our geomet-13

ric condition in all these examples.14

1 Introduction15

We study the following nonconvex optimization problem16 {
min
x∈Rd

f(x) + g(x)

A(x) = 0,
(1)

where f : Rd → R is a continuously-differentiable nonconvex function, and A : Rd → Rm is17

a nonlinear operator and b ∈ Rm. We assume that g : Rd → R is a proximal-friendly (possibly18

nonsmooth) convex function.19

A host of problems in computer science [? ? ? ], machine learning [? ? ], and signal processing [?20

? ] naturally fall under the template (1), including max-cut, clustering, generalized eigenvalue21

decomposition, as well as the quadratic assignment problem (QAP). please add a reference for qap.22

To solve (1), this paper proposes an intuitive and easy-to-implement augmented Lagrangian algorithm,23

and provides its total iteration complexity under an interpretable geometric condition. Before we24

elaborate on the results, let us first motivate (1) with an application to semidefinite programming25

(SDP):26

Vignette: Burer-Monteiro splitting. A powerful convex relaxation for max-cut, clustering, and27

several other problems described above is provided by the SDP28 {
min

X∈Sd×d
〈C,X〉

B(X) = b, X � 0,
(2)

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



where C ∈ Rd×d, X is a positive semidefinite d× d matrix, and B : Sd×d → Rm is a linear operator.29

If the unique-games conjecture is true, SDPs achieve the best approximation for the underlying30

discrete problem [? ].31

Since d is often large, many first- and second-order methods for solving such SDP’s are immedi-32

ately ruled out, not only due to their high computational complexity, but also due to their storage33

requirements, which are O(d2).34

A contemporary challenge in optimization is therefore to solve SDPs using little space and in a35

scalable fashion. A recent algorithm, namely, homotopy conditional gradient method (HCGM)—36

based on Linear Minimization Oracles (LMO)—can solve (2) in a small space via sketching [? ];37

however, such LMO-based methods are extremely slow in obtaining accurate solutions.38

A key approach for solving (1), dating back to [? ? ], is the so-called Burer-Monteiro (BM)39

factorization X = UU>, where U ∈ Rd×r and r is selected according to the guidelines in [? ?40

], which are shown to be optimal [? ]. This factorization does not introduce any extraneous local41

minima [? ]. Moreover, [? ] established the connection between local minima of factorized42

problem 3 and global optimum for 2. might have to double check this43

This factorization leads to the nonconvex problem44 {
min

U∈Rd×r
〈C,UU>〉

B(UU>) = b,
(3)

which can be easily written in the form of (1). To solve (3), the inexact Augmented Lagrangian45

Method (iALM) is widely used [? ? ? ], due to its cheap per iteration cost and its empirical success.46

Every (outer) iteration of iALM calls a solver to solve an intermediate augmented Lagrangian47

subproblem to near stationarity, and the user is free in the choice of this solver, which could use48

first-order, such as the proximal gradient descent [? ], or second-order information, such as an49

BFGS [? ].50

Unlike its convex counterpart [? ? ? ], the convergence rate and the complexity of iALM for (3)51

are not well-understood, see Section 5 for a review of the related literature. Indeed, addressing this52

important theoretical gap is one of the contributions of our work.53

Summary of contributions:54

◦ Our framework is future-proof in the sense that we obtain the convergence rate of iALM for (1)55

with an arbitrary solver for finding first- and second-order stationary points.56

◦ We investigate the effect of using different solvers for augmented Lagrangian subproblems and57

provide overall iteration complexity bounds for finding first- and second-order stationary points of (1).58

Our complexity bounds match the best theoretical results in optimization, see Section 5.59

◦We propose a geometric condition that simplifies the algorithmic analysis for iALM, and clarify its60

connection to well-known Polyak-Lojasiewicz and Mangasarian-Fromovitz conditions. please add61

citations for these conditions here. We also verify this condition for key problems in Section 6. how62

about the KL condition spars’19 reviewers pointed out?63

Roadmap. Section 2 collects the main tools and our notation. We present the iALM in Section 364

and obtain its convergence rate to first- and second-order stationary points in Section 4, alongside65

their iteration complexities. We provide a comprehensive review of the literature and highlight our66

key differences in Section 5. Section 6 presents the numerical evidence and comparisons with the67

state-of-the-art techniques.68

2 Preliminaries69

Notation. We use the notation 〈·, ·〉 and ‖ · ‖ for the standard inner product and the norm on Rd. For70

matrices, ‖ · ‖ and ‖ · ‖F denote the spectral and the Frobenius norms, respectively. For the convex71

function g : Rd → R, the subdifferential set at x ∈ Rd is denoted by ∂g(x) and we will occasionally72

use the notation ∂g(x)/β = {z/β : z ∈ ∂g(x)}. When presenting iteration complexity results, we73

often use Õ(·) which suppresses the logarithmic dependencies.74

2



We use the indicator function δX : Rd → R of a set X ⊂ Rd, which takes x to75

δX (x) =

{
0 x ∈ X
∞ x /∈ X . (4)

The distance function from a point x to X is denoted by dist(x,X ) = minz∈X ‖x− z‖. For integers76

k0 ≤ k1, we denote [k0 : k1] = {k0, . . . , k1}.77

For an operator A : Rd → Rm with components {Ai}mi=1, we let DA(x) ∈ Rm×d denote the78

Jacobian of A, where the ith row of DA(x) is the gradient vector∇Ai(x) ∈ Rd.79

Smoothness. We require f : Rd → R and A : Rd → Rm to be smooth, namely, there exist80

λf , λA ≥ 0 such that81

‖∇f(x)−∇f(x′)‖ ≤ λf‖x− x′‖,
‖DA(x)−DA(x′)‖ ≤ λA‖x− x′‖, (5)

for every x, x′ ∈ Rd.82

Augmented Lagrangian method (ALM). ALM is a classical algorithm, which first appeared in [?83

? ] and extensively studied afterwards in [? ? ]. For solving (1), ALM suggests solving the problem84

min
x

max
y
Lβ(x, y) + g(x), (6)

where, for penalty weight β > 0, Lβ is the corresponding augmented Lagrangian, defined as85

Lβ(x, y) := f(x) + 〈A(x), y〉+
β

2
‖A(x)‖2. (7)

The minimax formulation in (6) naturally suggests the following algorithm for solving (1). For dual86

step sizes {σk}k, consider the iterations87

xk+1 ∈ argmin
x

Lβ(x, yk) + g(x), (8)

88
yk+1 = yk + σkA(xk+1).

However, computing xk+1 above requires solving the nonconvex problem (8) to optimality, which is89

typically intractable. Instead, it is often easier to find an approximate first- or second-order stationary90

point of (8).91

Hence, we argue that by gradually improving the stationarity precision and increasing the penalty92

weight β above, we can reach a stationary point of the main problem in (1), as detailed in Section 3.93

Optimality conditions. First-order necessary optimality conditions for (1) are well-studied. Indeed,94

x ∈ Rd is a first-order stationary point of (1) if there exists y ∈ Rm such that95 {
−∇f(x)−DA(x)>y ∈ ∂g(x)

A(x) = 0,
(9)

where DA(x) is the Jacobian of A at x. Recalling (7), we observe that (9) is equivalent to96 {
−∇xLβ(x, y) ∈ ∂g(x)

A(x) = 0,
(10)

which is in turn the necessary optimality condition for (6). mfs: check approx. optimality conditions,97

how they apply in this setting. Inspired by this, we say that x is an (εf , β) first-order stationary point98

of (6) if there exists a y ∈ Rm such that99 {
dist(−∇xLβ(x, y), ∂g(x)) ≤ εf
‖A(x)‖ ≤ εf ,

(11)

for εf ≥ 0. In light of (11), a suitable metric for evaluating the stationarity of a pair (x, y) ∈ Rd×Rm100

is101

dist (−∇xLβ(x, y), ∂g(x)) + ‖A(x)‖, (12)

3



which we use as the first-order stopping criterion. As an example, for a convex set X ⊂ Rd, suppose102

that g = δX is the indicator function on X . Let also TX (x) ⊆ Rd denote the tangent cone to X at x,103

and with PTX (x) : Rd → Rd we denote the orthogonal projection onto this tangent cone. Then, for104

u ∈ Rd, it is not difficult to verify that105

dist (u, ∂g(x)) = ‖PTX (x)(u)‖. (13)

When g = 0, a first-order stationary point x ∈ Rd of (1) is also second-order stationary if106

λmin(∇xxLβ(x, y)) ≥ 0, (14)

where ∇xxLβ is the Hessian of Lβ with respect to x, and λmin(·) returns the smallest eigenvalue of107

its argument. Analogously, x is an (εf , εs, β) second-order stationary point if, in addition to (11), it108

holds that109

λmin(∇xxLβ(x, y)) ≥ −εs, (15)

for εs ≥ 0. Naturally, for second-order stationarity, we use λmin(∇xxLβ(x, y)) as the stopping110

criterion.111

Smoothness lemma. This next result controls the smoothness of Lβ(·, y) for a fixed y. The proof112

is standard but nevertheless is included in Appendix C for completeness.113

Lemma 2.1 (smoothness) For fixed y ∈ Rm and ρ, ρ′ ≥ 0, it holds that114

‖∇xLβ(x, y)−∇xLβ(x′, y)‖ ≤ λβ‖x− x′‖, (16)

for every x, x′ ∈ {x′′ : ‖x′′‖ ≤ ρ, ‖A(x′′)‖ ≤ ρ′}, where115

λβ ≤ λf +
√
mλA‖y‖+ (

√
mλAρ

′ + dλ′2A)β

=: λf +
√
mλA‖y‖+ λ′′(A, ρ, ρ′)β. (17)

Above, λf , λA were defined in (5) and116

λ′A := max
‖x‖≤ρ

‖DA(x)‖. (18)

3 Algorithm117

To solve the equivalent formulation of (1) presented in (6), we propose the inexact ALM (iALM),118

detailed in Algorithm 1.119

At the kth iteration, Step 2 of Algorithm 1 calls a solver that finds an approximate stationary point120

of the augmented Lagrangian Lβk
(·, yk) with the accuracy of εk+1, and this accuracy gradually121

increases in a controlled fashion.122

The increasing sequence of penalty weights {βk}k and the dual update (Steps 4 and 5) are responsible123

for continuously enforcing the constraints in (1). The appropriate choice for {βk}k will be specified124

in Sections 4.1 and 4.2.125

As we will see in the convergence analysis, the particular choice of the dual step sizes {σk}k in126

Algorithm 1 ensures that the dual variable yk remains bounded, see [? ] for a precedent in the ALM127

literature where a similar choice for σk is considered.128

4 Convergence Rate129

In this section, we detail the convergence rate of Algorithm 1 for finding first-order and second-130

order stationary points, along with total iteration complexity results. All the proofs are deferred131

to Appendix A. Theorem 4.1 below characterizes the convergence rate of Algorithm 1 for finding132

stationary points in terms of the number of outer iterations.133

134

4



Algorithm 1 Inexact ALM for solving (1)
Input: Non-decreasing, positive, unbounded sequence {βk}k≥1, stopping thresholds τf > 0 and
τs > 0.
Initialization: Initial primal variable x1 ∈ Rd, initial dual variable y0 ∈ Rm, initial dual step size
σ1 > 0.
for k = 1, 2, . . . do

1. (Update tolerance) εk+1 = 1/βk.
2. (Inexact primal solution) Obtain xk+1 ∈ Rd such that

dist(−∇xLβk
(xk+1, yk), ∂g(xk+1)) ≤ εk+1

for first-order stationarity

λmin(∇xxLβk
(xk+1, yk)) ≥ −εk+1

for second-order-stationarity, if g = 0 in (1).
3. (Update dual step size)

σk+1 = σ1 min
( ‖A(x1)‖ log2 2

‖A(xk+1)‖(k + 1) log2(k + 2)
, 1
)
.

4. (Dual ascent) yk+1 = yk + σk+1A(xk+1).
5. (Stopping criterion) If

dist(−∇xLβk
(xk+1), ∂g(xk+1)) + ‖A(xk+1)‖ ≤ τf ,

for first-order stationarity and if also λmin(∇xxLβk
(xk+1, yk)) ≥ −τs for second-order

stationarity, then quit and return xk+1 as an (approximate) stationary point of (1).
end for

Theorem 4.1 (convergence rate) Let ρ := supk∈[K] ‖x‖.1 Suppose that f and A satisfy (5) and let135

λ′f = max
‖x‖≤ρ

‖∇f(x)‖, λ′A = max
‖x‖≤ρ

‖DA(x)‖, (19)

be the (restricted) Lipschitz constants of f and A, respectively. For integers 2 ≤ k0 ≤ k1, consider136

the interval K = [k0 : k1], and let {xk}k∈K be the output sequence of Algorithm 1 on the interval137

K.2 For ν > 0, assume that138

ν‖A(xk)‖ ≤ dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
, (20)

for every k ∈ K. We consider two cases:139

• If a first-order solver is used in Step 2, then xk is an (εk,f , βk) first-order stationary point of (1)140

with141

εk,f =
1

βk−1

(
2(λ′f + λ′Aymax)(1 + λ′Aσk)

ν
+ 1

)
=:

Q(f, g, A, σ1)

βk−1
, (21)

for every k ∈ K, where the expression for ymax(x1, y0, σ1) is given in (41) due to the limited142

space.143

1If necessary, to ensure that ρ < ∞, one can add a small factor of ‖x‖2 to Lβ in (7). Then it is easy to
verify that the iterates of Algorithm 1 remain bounded, provided that the penalty weight β is large enough,
supx ‖∇f(x)‖/‖x‖ <∞ and supx ‖A(x)‖ <∞.

2The choice of k1 = ∞ is valid here too.

5



• If a second-order solver is used in Step 2, then xk is an (εk,f , εk,s, βk) second-order stationary144

point of (1) with εk,s specified above and with145

εk,s = εk−1 + σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1

=
ν + σk

√
mλA2λ′f + 2λ′Aymax

νβk−1
=:

Q′(f, g, A, σ1)

βk−1
. (22)

Loosely speaking, Theorem 4.1 states that Algorithm 1 converges to a (first- or second-) order146

stationary point of (1) at the rate of 1/βk. A few remarks are in order.147

Regularity. The key geometric condition in Theorem 4.1 is (20) which, broadly speaking, ensures148

that the primal updates of Algorithm 1 reduce the feasibility gap as the penalty weight βk grows. We149

will verify this condition for several examples in Section 6.150

This condition is closely related to those in the existing literature. In the special case where g = 0151

in (1), it is easy to verify that (20) reduces to the Polyak-Lojasiewicz (PL) condition for minimizing152

‖A(x)‖2 [? ]. PL condition itself is a special case of Kurdyka-Lojasiewicz with θ = 1/2, see [? ,153

Definition 1.1]. When g = 0, it is also easy to see that (20) is weaker than the Mangasarian-Fromovitz154

condition in nonlinear optimization [? ].155

By its definition, we may think of (20) as a local condition, which should hold within a neighborhood156

of the constraint set {x : A(x) = 0} rather than everywhere in Rd. There is a constant complexity157

algorithm in [? ] to reach this so-called “information zone”, which supplements Theorem 4.1.158

Moreover, in contrast to most conditions in the nonconvex optimization literature, such as [? ], the159

condition in (20) appears to be easier to verify, as we see in Section 6.160

AE: Fatih, I think you had added the following two references to our response for icml. Could161

you discuss their relevance here? [2] Rockafellar, Lagrange Multipliers and Optimality, 1993162

[3] Bertsekas, On penalty and multiplier methods for constrained minimization. 1996163

AE: the spars review talks about the "Pong-Li" work. Fatih, do you know what is that?164

Penalty method. A classical algorithm to solve (1) is the penalty method, which is characterized by165

the absence of the dual variable (y = 0) in (7). Indeed, ALM can be interpreted as an adaptive penalty166

or smoothing method with a variable center as determined by the dual variable. It is worth noting167

that, with same proof technique, one can establish the same convergence rate of Theorem 4.1 for168

the penalty method. However, while both methods have the same convergence rate in theory, iALM169

outperforms the penalty method in practice by virtue of its variable center and has been excluded170

from this presentation.171

Computational complexity. Theorem 4.1 allows us to specify the number of (outer) iterations that172

Algorithm 1 requires to reach a near-stationary point of problem (1) with a prescribed precision and,173

in particular, specifies the number of calls made to the solver in Step 2. In this sense, Theorem 4.1174

does not fully capture the computational complexity of Algorithm 1, as it does not take into account175

the computational cost of the solver in Step 2.176

To better understand the total iteration complexity of Algorithm 1, we consider two scenarios in the177

following. In the first scenario, we take the solver in Step 2 to be the Accelerated Proximal Gradient178

Method (APGM), a well-known first-order algorithm [? ]. In the second scenario, we will use the179

second-order trust region method developed in [? ].180

4.1 First-Order Optimality181

Let us first consider the case where the solver in Step 2 is is the first-order algorithm APGM, described182

in detail in [? ]. At a high level, APGM makes use of∇xLβ(x, y), the proximal operator proxg and183

classical Nesterov acceleration for the iterates [? ] to reach first-order stationarity for the first update184

in (8). Suppose that g = δX is the indicator function on a bounded convex set X ⊂ Rd and let185

ρ′ = max
x∈X
‖x‖, (23)

6



be the radius of a ball centered at the origin that includes X . Then, adapting the results in [? ] to our186

setup, APGM reaches xk in Step 2 of Algorithm 1 after187

O

(
λ2
βk
ρ′2

εk+1

)
(24)

(inner) iterations, where λβk
denotes the Lipschitz constant of ∇xLβk

(x, y), bounded in (17). For188

the clarity of the presentation, we have used a looser bound in (24) compared to [? ]. Using (24), we189

derive the following corollary, describing the total iteration complexity of Algorithm 1 in terms of the190

number calls made to the first-order oracle in APGM.191

Corollary 4.2 For b > 1, let βk = bk for every k. If we use APGM from [? ] for Step 2 of192

Algorithm 1, the algorithm finds an (εf , βk) first-order stationary point, after T calls to the first-order193

oracle, where194

T = O
(
Q3ρ′2

ε3
logb

(
Q

ε

))
= Õ

(
Q3ρ′2

ε3

)
. (25)

For Algorithm 1 to reach a near-stationary point with an accuracy of εf in the sense of (11) and195

with the lowest computational cost, we therefore need to perform only one iteration of Algorithm 1,196

with β1 specified as a function of εf by (21) in Theorem 4.1. In general, however, the constants in197

(21) are unknown and this approach is thus not feasible. Instead, the homotopy approach taken by198

Algorithm 1 ensures achieving the desired accuracy by gradually increasing the penalty weight.3 This199

homotopy approach increases the computational cost of Algorithm 1 only by a factor logarithmic in200

the εf , as detailed in the proof of Corollary 4.2.201

4.2 Second-Order Optimality202

Let us now consider the second-order optimality case where the solver in Step 2 is the the trust region203

method developed in [? ]. Trust region method minimizes quadratic approximation of the function204

within a dynamically updated trust-region radius. Second-order trust region method that we consider205

in this section makes use of Hessian (or an approximation of Hessian) of the augmented Lagrangian206

in addition to first order oracles.207

As shown in [? ], finding approximate second-order stationary points of convex-constrained problems208

is in general NP-hard. For this reason, we focus in this section on the special case of (1) with g = 0.209

Let us compute the total computational complexity of Algorithm 1 with the trust region method in210

Step 2, in terms of the number of calls made to the second-order oracle. By adapting the result in [?211

] to our setup, we find that the number of (inner) iterations required in Step 2 of Algorithm 1 to212

produce xk+1 is213

O

(
λ2
βk,H

(Lβk
(x1, y)−minx Lβk

(x, y))

ε3k

)
, (26)

where λβ,H is the Lipschitz constant of the Hessian of the augmented Lagrangian, which is of the214

order of β, as can be proven similar to Lemma 2.1 and x1 is the initial iterate of the given outer215

loop. In [? ], the term Lβ(x1, y) −minx Lβ(x, y) is bounded by a constant independent of ε. We216

assume a uniform bound for this quantity ∀βk, instead of for one value of βk as in [? ]. Using (26)217

and Theorem 4.1, we arrive at the following:218

Corollary 4.3 For b > 1, let βk = bk for every k. We assume that219

Lβ(x1, y)−min
x
Lβ(x, y) ≤ Lu, ∀β. (27)

If we use the trust region method from [? ] for Step 2 of Algorithm 1, the algorithm finds an220

ε-second-order stationary point of (1) in T calls to the second-order oracle where221

T ≤ O
(
LuQ

′5

ε5
logb

(
Q′

ε

))
= Õ

(
LuQ

′5

ε5

)
. (28)

Before closing this section, we note that the remark after Corollary 4.2 applies here as well.222

3In this context, homotopy loosely corresponds to the gradual enforcement of the constraints by increasing
the penalty weight.

7



5 Related Work223

ALM has a long history in the optimization literature, dating back to [? ? ]. In the special case of (1)224

with a convex function f and a linear operator A, standard, inexact and linearized versions of ALM225

have been extensively studied [? ? ? ? ].226

Classical works on ALM focused on the general template of (1) with nonconvex f and nonlinear A,227

with arguably stronger assumptions and required exact solutions to the subproblems of the form (8),228

which appear in Step 2 of Algorithm 1, see for instance [? ].229

A similar analysis was conducted in [? ] for the general template of (1). The authors considered230

inexact ALM and proved convergence rates for the outer iterates, under specific assumptions on231

the initialization of the dual variable. However, unlike our results, the authors did not analyze how232

to solve the subproblems inexactly and they did not provide total complexity results and verifiable233

conditions.234

Problem (1) with similar assumptions to us is also studied in [? ] and [? ] for first-order and second-235

order stationarity, respectively, with explicit iteration complexity analysis. As we have mentioned236

in Section 4, our iteration complexity results matches these theoretical algorithms with a simpler237

algorithm and a simpler analysis. In addition, these algorithms require setting final accuracies since238

they utilize this information in the algorithm. In contrast to [? ? ], Algorithm 1 does not set accuracies239

a priori.240

[? ] also considers the same template (1) for first-order stationarity with a penalty-type method instead241

of ALM. Even though the authors show O(1/ε2) complexity, this result is obtained by assuming that242

the penalty parameter remains bounded. We note that such an assumption can also be used to match243

our complexity results.244

[? ] studies the general template (1) with specific assumptions involving local error bound conditions245

for the (1). These conditions are studied in detail in [? ], but their validity for general SDPs (2) has246

never been established. This work also lacks the total iteration complexity analysis presented here.247

Another work [? ] focused on solving (1) by adapting the primal-dual method of Chambolle and248

Pock [? ]. The authors proved the convergence of the method and provided convergence rate by249

imposing error bound conditions on the objective function that do not hold for standard SDPs.250

[? ? ] is the first work that proposes the splitting X = UU> for solving SDPs of the form (2).251

Following these works, the literature on Burer-Monteiro (BM) splitting for the large part focused on252

using ALM for solving the reformulated problem (3).253

However, this approach has a few drawbacks: First, it requires exact solutions in Step 2 of Algo-254

rithm 1 in theory, which in practice is replaced with inexact solutions. Second, their results only255

establish convergence without providing the rates. In this sense, our work provides a theoretical256

understanding of the BM splitting with inexact solutions to Step 2 of Algorithm 1 and complete257

iteration complexities.258

[? ? ] are among the earliest efforts to show convergence rates for BM splitting, focusing on259

the special case of SDPs without any linear constraints. For these specific problems, they prove260

the convergence of gradient descent to global optima with convergence rates, assuming favorable261

initialization. These results, however, do not apply to general SDPs of the form (2) where the difficulty262

arises due to the linear constraints.263

[? ] focused on the quadratic penalty formulation of (1), namely,264

min
X�0
〈C,X〉+

µ

2
‖B(x)− b‖2, (29)

which after BM splitting becomes265

min
U∈Rd×r

〈C,UU>〉+
µ

2
‖B(UU>)− b‖2, (30)

for which they study the optimality of the second-order stationary points. These results are for266

establishing a connection between the stationary points of (30) and global optima of (29). In contrast,267

we focus on the relation of the stationary points of (6) to the constrained problem (1).268

Another popular method for solving SDPs are due to [? ? ? ], focusing on the case where the269

constraints in (1) can be written as a Riemannian manifold after BM splitting. In this case, the authors270

8



apply the Riemannian gradient descent and Riemannian trust region methods for obtaining first- and271

second-order stationary points, respectively. They obtain O(1/ε2) complexity for finding first-order272

stationary points and O(1/ε3) complexity for finding second-order stationary points.273

While these complexities appear better than ours, the smooth manifold requirement in these works274

is indeed restrictive. In particular, this requirement holds for max-cut and generalized eigenvalue275

problems, but it is not satisfied for other important SDPs such as quadratic programming (QAP),276

optimal power flow and clustering with general affine constraints. In addition, as noted in [? ], per277

iteration cost of their method for max-cut problem is an astronomical O(d6).278

Lastly, there also exists a line of work for solving SDPs in their original convex formulation, in a279

storage efficient way [? ? ? ]. These works have global optimality guarantees by their virtue of280

directly solving the convex formulation. On the downside, these works require the use of eigenvalue281

routines and exhibit significantly slower convergence as compared to nonconvex approaches [? ].282

6 Numerical Evidence283

We first begin with a caveat: It is known that quasi-Newton methods, such as BFGS and lBFGS, might284

not converge for nonconvex problems [? ? ]. For this reason, we have used the trust region method as285

the second-order solver in our analysis in Section 4, which is well-studied for nonconvex problems [?286

]. Empirically, however, BFGS and lBGFS are extremely successful and we have therefore opted for287

those solvers in this section since the subroutine does not affect Theorem 4.1 as long as the subsolver288

performs well in practice.289

6.1 Clustering290

Given data points {zi}ni=1, the entries of the corresponding Euclidean distance matrix D ∈ Rnxn291

are Di,j = ‖zi − zj‖2. Clustering is then the problem of finding a co-association matrix Y ∈ Rn×n292

such that Yij = 1 if points zi and zj are within the same cluster and Yij = 0 otherwise. In [? ], the293

authors provide a SDP relaxation of the clustering problem, specified as294 {
min

Y ∈Rnxn
tr(DY )

Y 1 = 1, tr(Y ) = s, Y � 0, Y ≥ 0,
(31)

where s is the number of clusters and Y is both positive semidefinite and has nonnegative entries.295

Standard SDP solvers do not scale well with the number of data points n, since they often require296

projection onto the semidefinite cone with the complexity of O(n3). We instead use the Burer-297

Monteiro factorization to solve (31), sacrificing convexity to reduce the computational complexity.298

More specifically, we solve the program299 {
min

V ∈Rnxr
tr(DV V >)

V V >1 = 1, ‖V ‖2F ≤ s, V ≥ 0,
(32)

where 1 ∈ Rn is the vector of all ones. Note that Y ≥ 0 in (31) is replaced above by the much300

stronger but easier-to-enforce constraint V ≥ 0 in (32), see [? ] for the reasoning behind this301

relaxation. Now, we can cast (32) as an instance of (1). Indeed, for every i ≤ n, let xi ∈ Rr denote302

the ith row of V . We next form x ∈ Rd with d = nr by expanding the factorized variable V , namely,303

x = [x>1 , · · · , x>n ]> ∈ Rd,
and then set304

f(x) =

n∑
i,j=1

Di,j 〈xi, xj〉 , g = δC ,

305

A(x) = [x>1

n∑
j=1

xj − 1, · · · , x>n
n∑
j=1

xj − 1]>, (33)

where C is the intersection of the positive orthant in Rd with the Euclidean ball of radius
√
s. In306

Appendix D, we somewhat informally verify that Theorem 4.1 applies to (1) with f, g, A specified307

above.308

9



In our simulations, we use two different solvers for Step 2 of Algorithm 1, namely, APGM and309

lBFGS. APGM is a solver for nonconvex problems of the form (8) with convergence guarantees310

to first-order stationarity, as discussed in Section 4. lBFGS is a limited-memory version of BFGS311

algorithm in [? ] that approximately leverages the second-order information of the problem. We312

compare our approach against the following convex methods:313

• HCGM: Homotopy-based Conditional Gradient Method in [? ] which directly solves (31).314

• SDPNAL+: A second-order augmented Lagrangian method for solving SDP’s with nonneg-315

ativity constraints [? ].316

As for the dataset, our experimental setup is similar to that described by [? ]. We use the publicly-317

available fashion-MNIST data in [? ], which is released as a possible replacement for the MNIST318

handwritten digits. Each data point is a 28× 28 gray-scale image, associated with a label from ten319

classes, labeled from 0 to 9. First, we extract the meaningful features from this dataset using a simple320

two-layer neural network with a sigmoid activation function. Then, we apply this neural network to321

1000 test samples from the same dataset, which gives us a vector of length 10 for each data point,322

where each entry represents the posterior probability for each class. Then, we form the `2 distance323

matrix D from these probability vectors. The results are depicted in Figure 1. We implemented 3324

algorithms on MATLAB and used the software package for SDPNAL+ which contains mex files. It is325

predictable that the performance of our nonconvex approach would also improve by using mex files.326

10
0

10
1

10
2

10
-10

10
-5

10
0

10
1

10
2

10
3

10
4

10
-10

10
-5

10
0

10
5

Figure 1: Convergence of different algorithms for clustering with fashion-MNIST dataset. Here, we
set the rank as r = 20 for the nonconvex approaches. The solution rank for the template (31) is the
number of clusters s [? , Theorem 1]. However, as discussed in [? ], setting rank r > s leads more
accurate reconstruction at the expense of speed, hence our choice of r = 20.

6.2 Basis Pursuit327

Basis Pursuit (BP) finds sparsest solutions of an under-determined system of linear equations, namely,328 {
minz ‖z‖1
Bz = b,

(34)

where B ∈ Rn×d and b ∈ Rn. BP has found many applications in machine learning, statistics and329

signal processing [? ? ? ]. A plethora of primal-dual convex optimization algorithms are available in330

the literature to solve BP, including [? ? ]. There also exists a line of work [? ] that handles sparse331

regression via regularization with `1 norm.332

Here, we take a different approach and cast (34) as an instance of (1). Note that any z ∈ Rd333

can be decomposed as z = z+ − z−, where z+, z− ∈ Rd are the positive and negative parts of334

z, respectively. Then consider the change of variables z+ = u◦21 and z− = u◦22 ∈ Rd, where ◦335

denotes element-wise power. Next, we concatenate u1 and u2 as x := [u>1 , u
>
2 ]> ∈ R2d and define336

B := [B,−B] ∈ Rn×2d. Then, (34) is equivalent to (1) with337

f(x) =‖x‖2, g(x) = 0

A(x) =Bx◦2 − b. (35)

10



In Appendix E, we verify with minimal detail that Theorem 4.1 indeed applies to (1) with the above338

f,A.339

We draw the entries of B independently from a zero-mean and unit-variance Gaussian distribution.340

For a fixed sparsity level k, the support of z∗ ∈ Rd and its nonzero amplitudes are also drawn from341

the standard Gaussian distribution. Then the measurement vector is created as b = Bz + ε, where ε342

is the noise vector with entries drawn independently from the zero-mean Gaussian distribution with343

variance σ2 = 10−6.344

AE: the image sizes throughout the paper are inconsistent which is not nice. The font size in345

Fig 3 is also very different from the rest of the paper which is not nice. please change.

10
1

10
2

10
3

10
4

10
-8

10
-4

10
0

10
1

10
2

10
3

10
4

10
-8

10
-4

10
0

Figure 2: Convergence with different subsolvers for the aforementioned nonconvex relaxation.

346 Figure 2 compiles our results for the proposed relaxation. It is, indeed, interesting to see that these347

type of nonconvex relaxations gives the solution of convex one and first order methods succeed.348

Discussion: The true potential of our reformulation is in dealing with more structured norms rather349

than `1, where computing the proximal operator is often intractable. One such case is the latent group350

lasso norm [? ], defined as351

‖z‖Ω =

I∑
i=1

‖zΩi
‖,

where {Ωi}Ii=1 are (not necessarily disjoint) index sets of {1, · · · , d}. Although not studied here, we352

believe that the nonconvex framework presented in this paper can serve to solve more complicated353

problems, such as the latent group lasso. We leave this research direction for future work.354

References355

11



A Proof of Theorem 4.1356

For every k ≥ 2, recall from (7) and Step 2 of Algorithm 1 that xk satisfies357

dist(−∇f(xk)−DA(xk)>yk−1

− βk−1DA(xk)>A(xk), ∂g(xk))

= dist(−∇xLβk−1
(xk, yk−1), ∂g(xk)) ≤ εk. (36)

With an application of the triangle inequality, it follows that358

dist(−βk−1DA(xk)>A(xk), ∂g(xk))

≤ ‖∇f(xk)‖+ ‖DA(xk)>yk−1‖+ εk, (37)

which in turn implies that359

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1)

≤ ‖∇f(xk)‖
βk−1

+
‖DA(xk)>yk−1‖

βk−1
+

εk
βk−1

≤
λ′f + λ′A‖yk−1‖+ εk

βk−1
, (38)

where λ′f , λ
′
A were defined in (19). We next translate (38) into a bound on the feasibility gap ‖A(xk)‖.360

Using the regularity condition (20), the left-hand side of (38) can be bounded below as361

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1) ≥ ν‖A(xk)‖. (see (20)) (39)

By substituting (39) back into (38), we find that362

‖A(xk)‖ ≤
λ′f + λ′A‖yk−1‖+ εk

νβk−1
. (40)

In words, the feasibility gap is directly controlled by the dual sequence {yk}k. We next establish that363

the dual sequence is bounded. Indeed, for every k ∈ K, note that364

‖yk‖ = ‖y0 +

k∑
i=1

σiA(xi)‖ (Step 5 of Algorithm 1)

≤ ‖y0‖+

k∑
i=1

σi‖A(xi)‖ (triangle inequality)

≤ ‖y0‖+

k∑
i=1

‖A(x1)‖ log2 2

k log2(k + 1)
(Step 4)

≤ ‖y0‖+ c‖A(x1)‖ log2 2 =: ymax, (41)

where365

c ≥
∞∑
i=1

1

k log2(k + 1)
. (42)

Substituting (41) back into (40), we reach366

‖A(xk)‖ ≤
λ′f + λ′Aymax + εk

νβk−1

≤
2λ′f + 2λ′Aymax

νβk−1
, (43)

where the second line above holds if k0 is large enough, which would in turn guarantees that367

εk = 1/βk−1 is sufficiently small since {βk}k is increasing and unbounded. It remains to control368

12



the first term in (12). To that end, after recalling Step 2 of Algorithm 1 and applying the triangle369

inequality, we can write that370

dist(−∇xLβk−1
(xk, yk), ∂g(xk))

≤ dist(−∇xLβk−1
(xk, yk−1), ∂g(xk))

+ ‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖. (44)

The first term on the right-hand side above is bounded by εk, by Step 5 of Algorithm 1. For the371

second term on the right-hand side of (44), we write that372

‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖
= ‖DA(xk)>(yk − yk−1)‖ (see (7))

≤ λ′A‖yk − yk−1‖ (see (19))

= λ′Aσk‖A(xk)‖ (see Step 5 of Algorithm 1)

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax). (see (43)) (45)

By combining (44,45), we find that373

dist(∇xLβk−1
(xk, yk), ∂g(xk))

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk. (46)

By combining (43,46), we find that374

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤
(

2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk

)
+ 2

(
λ′f + λ′Aymax

νβk−1

)
. (47)

Applying σk ≤ σ1, we find that375

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤ 2λ′Aσ1 + 2

νβk−1
(λ′f + λ′Aymax) + εk. (48)

For the second part of the theorem, we use the Weyl’s inequality and Step 5 of Algorithm 1 to write376

λmin(∇xxLβk−1
(xk, yk−1)) ≥ λmin(∇xxLβk−1

(xk, yk))

− σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖. (49)

The first term on the right-hand side is lower bounded by −εk−1 by Step 2 of Algorithm 1. We next377

bound the second term on the right-hand side above as378

σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖

≤ σk
√
mmax

i
‖Ai(xk)‖‖∇2Ai(xk)‖

≤ σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

where the last inequality is due to (5,43). Plugging into (49) gives379

λmin(∇xxLβk−1
(xk, yk−1))

≥ −εk−1 − σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

which completes the proof of Theorem 4.1.380

13



B Proof of Corollary 4.2381

Let K denote the number of (outer) iterations of Algorithm 1 and let εf denote the desired accuracy382

of Algorithm 1, see (11). Recalling Theorem 4.1, we can then write that383

εf =
Q

βK
, (50)

or, equivalently, βK = Q/εf . We now count the number of total (inner) iterations T of Algorithm 1384

to reach the accuracy εf . From (17) and for sufficiently large k, recall that λβk
≤ λ′′βk is the385

smoothness parameter of the augmented Lagrangian. Then, from (24) ad by summing over the outer386

iterations, we bound the total number of (inner) iterations of Algorithm 1 as387

T =

K∑
k=1

O

(
λ2
βk−1

ρ′2

εk

)

=

K∑
k=1

O
(
β3
k−1ρ

′2) (Step 1 of Algorithm 1)

≤ O
(
Kβ3

K−1ρ
′2) ({βk}k is increasing)

≤ O

(
KQ3ρ′2

ε3f

)
. (see (50)) (51)

In addition, if we specify βk = bk for all k, we can further refine T . Indeed,388

βK = bK =⇒ K = logb

(
Q

εf

)
, (52)

which, after substituting into (51) gives the final bound in Corollary 4.2.389

C Proof of Lemma 2.1390

Note that391

Lβ(x, y) = f(x) +

m∑
i=1

yiAi(x) +
β

2

m∑
i=1

(Ai(x))2, (53)

which implies that392

∇xLβ(x, y)

= ∇f(x) +

m∑
i=1

yi∇Ai(x) +
β

2

m∑
i=1

Ai(x)∇Ai(x)

= ∇f(x) +DA(x)>y + βDA(x)>A(x), (54)

where DA(x) is the Jacobian of A at x. By taking another derivative with respect to x, we reach393

∇2
xLβ(x, y) = ∇2f(x) +

m∑
i=1

(yi + βAi(x))∇2Ai(x)

+ β

m∑
i=1

∇Ai(x)∇Ai(x)>. (55)

It follows that394

‖∇2
xLβ(x, y)‖

≤ ‖∇2f(x)‖+ max
i
‖∇2Ai(x)‖ (‖y‖1 + β‖A(x)‖1)

+ β

m∑
i=1

‖∇Ai(x)‖2

≤ λh +
√
mλA (‖y‖+ β‖A(x)‖) + β‖DA(x)‖2F . (56)

14



For every x such that ‖x‖ ≤ ρ and ‖A(x)‖ ≤ ρ, we conclude that395

‖∇2
xLβ(x, y)‖ ≤ λf +

√
mλA (‖y‖+ βρ′) + β max

‖x‖≤ρ
‖DA(x)‖2F , (57)

which completes the proof of Lemma 2.1.396

D Clustering397

We only verify the condition in (20). Note that398

A(x) = V V >1− 1, (58)
399

DA(x) =

 w1,1x
>
1 · · · w1,nx

>
1

...
wn,1x

>
n · · · wn,n1x>n


= [ V · · · V ] +

 x>1
. . .

x>n

 , (59)

where wi.i = 2 and wi,j = 1 for i 6= j. In the last line above, n copies of V appear and the last400

matrix above is block-diagonal. For xk, define Vk as in the example and let xk,i be the ith row of Vk.401

Consequently,402

DA(xk)>A(xk) =

 (V >k Vk − In)V >k 1
...

(V >k Vk − In)V >k 1


+

 xk,1(VkV
>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n

 , (60)

where In ∈ Rn×n is the identity matrix. Let us make a number of simplifying assumptions. First,403

we assume that ‖xk‖ <
√
s, which can be easily enforced in the iterates. Under this assumption, it404

follows that405

(∂g(xk))i =

{
0 (xk)i > 0

{a : a ≤ 0} (xk)i = 0,
i ≤ d. (61)

Second, we assume that Vk has nearly orthonormal columns, namely, V >k Vk ≈ In. This can also be406

easily enforced in each iterate of Algorithm 1 and naturally corresponds to well-separated clusters.407

While a more fine-tuned argument can remove these assumptions, they will help us simplify the408

presentation here. Under these assumptions, the (squared) right-hand side of (20) becomes409

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

=
∥∥∥(−DA(xk)>A(xk)

)
+

∥∥∥2

(a+ = max(a, 0))

=

∥∥∥∥∥∥∥
 xk,1(VkV

>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n


∥∥∥∥∥∥∥

2

(xk ∈ C ⇒ xk ≥ 0)

=

n∑
i=1

‖xk,i‖2(VkV
>
k 1− 1)2

i

≥ min
i
‖xk,i‖2 ·

n∑
i=1

(VkV
>
k 1− 1)2

i

= min
i
‖xk,i‖2 · ‖VkV >k 1− 1‖2. (62)

15



Given a prescribed ν, ensuring ‖xk,i‖ ≥ ν guarantees (20). This requirement corresponds again to410

well-separated clusters. When the clusters are sufficiently separated and the algorithm is initialized411

close enough to the constraint set, there is indeed no need to separately enforce this condition. In412

practice, often n exceeds the number of true clusters and a more fine-tuned analysis is required to413

establish (20) by restricting the argument to a particular subspace of Rn.414

E Basis Pursuit415

We only verify the regularity condition in (20) for (1) with f,A, g specified in (35). Note that416

DA(x) = 2Bdiag(x), (63)

where diag(x) ∈ R2d×2d is the diagonal matrix formed by x. The left-hand side of (20) then reads as417

dist
(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
= dist

(
−DA(xk)>A(xk), {0}

)
(g ≡ 0)

= ‖DA(xk)>A(xk)‖

= 2‖diag(xk)B
>

(Bx◦2k − b)‖. (see (63)) (64)

To bound the last line above, let x∗ be a solution of (1) and note that Bx◦2∗ = b by definition. Let also418

zk, z∗ ∈ Rd denote the vectors corresponding to xk, x∗. Corresponding to xk, also define uk,1, uk,2419

naturally and let |zk| = u◦2k,1 + u◦2k,2 ∈ Rd be the amplitudes of zk. To simplify matters, let us assume420

also that B is full-rank. We then rewrite the last line of (64) as421

‖diag(xk)B
>

(Bx◦2k − b)‖2

= ‖diag(xk)B
>
B(x◦2k − x◦2∗ )‖2 (Bx◦2∗ = b)

= ‖diag(xk)B
>
B(xk − x∗)‖2

= ‖diag(uk,1)B>B(zk − z∗)‖2

+ ‖diag(uk,2)B>B(zk − z∗)‖2

= ‖diag(u◦2k,1 + u◦2k,2)B>B(zk − z∗)‖2

= ‖diag(|zk|)B>B(zk − z∗)‖2

≥ ηn(Bdiag(|zk|))2‖B(zk − z∗)‖2

= ηn(Bdiag(|zk|))2‖Bzk − b‖2 (Bz∗ = Bx◦2∗ = b)

≥ min
|T |=n

ηn(BT ) · |zk,(n)|2‖Bzk − b‖2, (65)

where ηn(·) returns the nth largest singular value of its argument. In the last line above, BT is the422

restriction of B to the columns indexed by T of size n. Moreover, zk,(n) is the nth largest entry of z423

in magnitude. Given a prescribed ν, (20) therefore holds if424

|zk,(n)| ≥
√

ν

min|T |=n ηn(BT ) · ‖Bzk − b‖2
, (66)

for every iteration k. If Algorithm 1 is initialized close enough to the solution z∗, there will be no425

need to directly enforce this condition.426

Discussion The true potential of the reformulation of BP in (35) is in dealing with more structured427

norms than `1, where computing the proximal operator is often intractable. One such case is the428

latent group lasso norm [? ], defined as429

‖z‖Ω =

I∑
i=1

‖zΩi
‖,

where {Ωi}Ii=1 are (not necessarily disjoint) index sets of {1, · · · , d}. Although not studied here, we430

believe that the non-convex framework presented in this paper can serve to solve more complicated431

problems, such as the latent group lasso. We leave this research direction for future work.432

16



E.1 `∞ Denoising with a Generative Prior433

The authors of [? ] have proposed to project onto the range of a Generative Adversarial network434

(GAN) [? ], as a way to defend against adversarial examples. For a given noisy observation x∗ + η,435

they consider a projection in the `2 norm. We instead propose to use our augmented Lagrangian436

method to denoise in the `∞ norm, a much harder task:437

min
x,z

‖x∗ + η − x‖∞
s.t. x = G(z).

(67)

Figure 3: Augmented Lagrangian vs Adam for `∞ denoising (left). `2 vs `∞ denoising as defense
against adversarial examples

We use a pretrained generator for the MNIST dataset, given by a standard deconvolutional neural438

network architecture. We compare the succesful optimizer Adam against our method. Our algorithm439

involves two forward/backward passes through the network, as oposed to Adam that requires only440

one. For this reason we let our algorithm run for 4000 iterations, and Adam for 8000 iterations.441

For a particular example, we plot the objective value vs iteration count in figure E.1. Our method442

successfully minimizes the objective value, while Adam does not succeed.443

E.2 Generalized Eigenvalue Problem444

Generalized eigenvalue problem has extensive applications in machine learning, statistics and data445

analysis [? ]. The well-known nonconvex formulation of the problem is [? ].446

{
min
x∈Rn

x>Cx

x>Bx = 1,
(68)

where B,C ∈ Rn×n are symmetric matrices and B is positive definite, i.e. B � 0. The generalized447

eigenvector computation is equivalent to performing principal component analysis (PCA) of C in448

the norm B. Moreover, it is also equivalent to computing the top eigenvector of symmetric matrix449

S = B−1/2CB1−2 and multiplying the resulting vector by B−1/2. However, for sufficiently large n,450

computing B−1/2 is extremely expensive. The natural convex sdp relaxation for (68) involves lifting451

Y = xx> and removes the non-convex rank(Y ) = 1 constraint,452

{
min

Y ∈Rn×n
tr(CY )

tr(BY ) = 1, X � 0.
(69)

Here, we solve (68) because it directly fits into our template with,453

f(x) =x>Cx, g(x) = 0

A(x) =x>Bx− 1. (70)

17



(i) C : Gaussian iid (ii) C : Polynomial decay (iii) C : Exponential decay

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
-10

10
-5

10
0

10
-1

10
0

10
1

10
-10

10
-5

10
0

0 200 400 600 800 1000

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4: (Top) Objective convergence for calculating top generalized eigenvalue and eigenvector ofB
and C. (Bottom) Eigenvalue structure of the matrices. For (i),(ii) and (iii), C is positive semidefinite;
for (iv), (v) and (vi), C contains negative eigenvalues. [(i): Generated by taking symmetric part of
iid Gaussian matrix. (ii): Generated by randomly rotating diag(1−p, 2−p, · · · , 1000−p)(p = 1). (iii):
Generated by randomly rotating diag(10−p, 10−2p, · · · , 10−1000p)(p = 0.0025).]

We compare our approach against 3 different methods. Manifold based Riemannian gradient descent454

and Riemannian trust region methods in[? ] and generalized eigenvector via linear system solver455

(abbrevated as. GenELin) in [? ]. We have used Manopt software package in [? ] for the manifold456

based methods. For GenELin, we have utilized Matlab’s backslash operator as the linear solver. The457

results are compiled in Figure 4.458

18


	Introduction
	Preliminaries 
	Algorithm 
	Convergence Rate 
	First-Order Optimality 
	Second-Order Optimality 

	Related Work 
	Numerical Evidence 
	Clustering
	Basis Pursuit
	Adversarial Denoising with GANs

	Proof of Theorem 4.1 
	Proof of Corollary 4.2
	Proof of Lemma 2.1
	Clustering 
	Basis Pursuit 
	 Denoising with a Generative Prior
	Generalized Eigenvalue Problem


