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Abstract

We propose a practical inexact augmented Lagrangian method (iALM) for noncon-1

vex problems with nonlinear constraints. We characterize the total computational2

complexity of our method subject to a verifiable geometric condition, which is3

closely related to the Polyak-Lojasiewicz and Mangasarian-Fromowitz conditions.4

In particular, when a first-order solver is used for the inner iterates, we prove that5

iALM finds a first-order stationary point with Õ(1/ε3) calls to the first-order oracle.6

If, in addition, the problem is smooth and a second-order solver is used for the7

inner iterates, iALM finds a second-order stationary point with Õ(1/ε5) calls to8

the second-order oracle. These complexity results match the known theoretical9

results in the literature.10

We also provide strong numerical evidence on large-scale machine learning prob-11

lems, including the Burer-Monteiro factorization of semidefinite programs, and12

a novel nonconvex relaxation of the standard basis pursuit template. For these13

examples, we also show how to verify our geometric condition.14

1 Introduction15

We study the nonconvex optimization problem16

min
x∈Rd

f(x) + g(x) s.t. A(x) = 0, (1)

where f : Rd → R is a continuously-differentiable nonconvex function and A : Rd → Rm is a17

nonlinear operator. We assume that g : Rd → R is a proximal-friendly convex function [47].18

A host of problems in computer science [33, 37, 69], machine learning [40, 58], and signal pro-19

cessing [56, 57] naturally fall under the template (1), including max-cut, clustering, generalized20

eigenvalue decomposition, as well as the quadratic assignment problem (QAP) [69].21

To solve (1), we propose an intuitive and easy-to-implement augmented Lagrangian algorithm, and22

provide its total iteration complexity under an interpretable geometric condition. Before we elaborate23

on the results, let us first motivate (1) with an application to semidefinite programming (SDP):24

Vignette: Burer-Monteiro splitting. A powerful convex relaxation for max-cut, clustering, and25

many others is provided by the SDP26

min
X∈Sd×d

〈C,X〉 s.t. B(X) = b, X � 0, (2)

where C ∈ Rd×d, X is a positive semidefinite d× d matrix, and B : Sd×d → Rm is a linear operator.27

If the unique-games conjecture is true, the SDP (2) obtains the best possible approximation for the28

underlying discrete problem [53].29
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Since d is often large, many first- and second-order methods for solving such SDP’s are immedi-30

ately ruled out, not only due to their high computational complexity, but also due to their storage31

requirements, which are O(d2).32

A contemporary challenge in optimization is therefore to solve SDPs using little space and in a33

scalable fashion. The recent homotopy conditional gradient method, which is based on linear34

minimization oracles (LMOs), can solve (2) in a small space via sketching [68]. However, such35

LMO-based methods are extremely slow in obtaining accurate solutions.36

A different approach for solving (1), dating back to [14, 15], is the so-called Burer-Monteiro (BM)37

factorization X = UU>, where U ∈ Rd×r and r is selected according to the guidelines in [49, 1],38

which is tight [62]. The BM factorization leads to the following nonconvex problem in the template (1):39

40

min
U∈Rd×r

〈C,UU>〉 s.t. B(UU>) = b, (3)

The BM factorization does not introduce any extraneous local minima [15]. Moreover, [13] estab-41

lished the connection between the local minimizers of the factorized problem (3) and the global42

minimizers for (2). To solve (3), the inexact Augmented Lagrangian method (iALM) is widely43

used [14, 15, 35], due to its cheap per iteration cost and its empirical success.44

Every (outer) iteration of iALM calls a solver to solve an intermediate augmented Lagrangian45

subproblem to near stationarity. The choices include first-order methods, such as the proximal46

gradient descent [47], or second-order methods, such as the trust region method and BFGS [44].147

Unlike its convex counterpart [41, 36, 64], the convergence rate and the complexity of iALM for (3)48

are not well-understood, see Section 5 for a review of the related literature. Indeed, addressing this49

important theoretical gap is one of the contributions of our work. In addition50

. We derive the convergence rate of iALM for solving (1) to first- or second-order optimality, and51

find the total iteration complexity of iALM using different solvers for the augmented Lagrangian52

subproblems. Our complexity bounds match the best theoretical results in optimization, see Section 5.53

. Our iALM framework is future-proof in the sense that different subsolvers can be substituted.54

. We propose a geometric condition that simplifies the algorithmic analysis for iALM, and clarify its55

connection to well-known Polyak-Lojasiewicz [32] and Mangasarian-Fromovitz [3] conditions. We56

also verify this condition for key problems in Section 6.57

2 Preliminaries58

Notation. We use the notation 〈·, ·〉 and ‖ · ‖ for the standard inner product and the norm on Rd. For59

matrices, ‖ · ‖ and ‖ · ‖F denote the spectral and the Frobenius norms, respectively. For the convex60

function g : Rd → R, the subdifferential set at x ∈ Rd is denoted by ∂g(x) and we will occasionally61

use the notation ∂g(x)/β = {z/β : z ∈ ∂g(x)}. When presenting iteration complexity results, we62

often use Õ(·) which suppresses the logarithmic dependencies.63

We denote δX : Rd → R as the indicator function of a set X ⊂ Rd. The distance function from64

a point x to X is denoted by dist(x,X ) = minz∈X ‖x − z‖. For integers k0 ≤ k1, we use the65

notation [k0 : k1] = {k0, . . . , k1}. For an operator A : Rd → Rm with components {Ai}mi=1,66

DA(x) ∈ Rm×d denotes the Jacobian of A, where the ith row of DA(x) is the vector∇Ai(x) ∈ Rd.67

Smoothness. We assume smooth f : Rd → R and A : Rd → Rm; i.e., there exist λf , λA ≥ 0 s.t.68

‖∇f(x)−∇f(x′)‖ ≤ λf‖x− x′‖, ‖DA(x)−DA(x′)‖ ≤ λA‖x− x′‖, ∀x, x′ ∈ Rd. (4)

Augmented Lagrangian method (ALM). ALM is a classical algorithm, which first appeared in [29,69

51] and extensively studied afterwards in [3, 8]. For solving (1), ALM suggests solving the problem70

min
x

max
y
Lβ(x, y) + g(x), (5)

where, for penalty weight β > 0, Lβ is the corresponding augmented Lagrangian, defined as71

Lβ(x, y) := f(x) + 〈A(x), y〉+
β

2
‖A(x)‖2. (6)

1Strictly speaking, BFGS is in fact a quasi-Newton method that emulates second-order information.
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The minimax formulation in (5) naturally suggests the following algorithm for solving (1):72

xk+1 ∈ argmin
x

Lβ(x, yk) + g(x), (7)
73

yk+1 = yk + σkA(xk+1),

where the dual step sizes are denoted as {σk}k. However, computing xk+1 above requires solving74

the nonconvex problem (7) to optimality, which is typically intractable. Instead, it is often easier to75

find an approximate first- or second-order stationary point of (7).76

Hence, we argue that by gradually improving the stationarity precision and increasing the penalty77

weight β above, we can reach a stationary point of the main problem in (1), as detailed in Section 3.78

Optimality conditions. First-order necessary optimality conditions for (1) are well-studied. Indeed,79

x ∈ Rd is a first-order stationary point of (1) if there exists y ∈ Rm such that80

−∇xLβ(x, y) ∈ ∂g(x), A(x) = 0, (8)
which is in turn the necessary optimality condition for (5). Inspired by this, we say that x is an (εf , β)81

first-order stationary point of (5) if there exists a y ∈ Rm such that82

dist(−∇xLβ(x, y), ∂g(x)) ≤ εf , ‖A(x)‖ ≤ εf , (9)

for εf ≥ 0. In light of (9), a metric for evaluating the stationarity of a pair (x, y) ∈ Rd × Rm is83

dist (−∇xLβ(x, y), ∂g(x)) + ‖A(x)‖, (10)

which we use as the first-order stopping criterion. As an example, for a convex set X ⊂ Rd, suppose84

that g = δX is the indicator function on X . Let also TX (x) ⊆ Rd denote the tangent cone to X at x,85

and with PTX (x) : Rd → Rd we denote the orthogonal projection onto this tangent cone. Then, for86

u ∈ Rd, it is not difficult to verify that87

dist (u, ∂g(x)) = ‖PTX (x)(u)‖. (11)

When g = 0, a first-order stationary point x ∈ Rd of (1) is also second-order stationary if88

λmin(∇xxLβ(x, y)) ≥ 0, (12)
where ∇xxLβ is the Hessian of Lβ with respect to x, and λmin(·) returns the smallest eigenvalue of89

its argument. Analogously, x is an (εf , εs, β) second-order stationary point if, in addition to (??), it90

holds that91

λmin(∇xxLβ(x, y)) ≥ −εs, (13)
for εs ≥ 0. Naturally, for second-order stationarity, we use λmin(∇xxLβ(x, y)) as the stopping92

criterion.93

Smoothness lemma. This next result controls the smoothness of Lβ(·, y) for a fixed y. The proof94

is standard but nevertheless is included in Appendix C for completeness.95

Lemma 2.1 (smoothness). For fixed y ∈ Rm and ρ, ρ′ ≥ 0, it holds that96

‖∇xLβ(x, y)−∇xLβ(x′, y)‖ ≤ λβ‖x− x′‖, (14)
for every x, x′ ∈ {x′′ : ‖x′′‖ ≤ ρ, ‖A(x′′)‖ ≤ ρ′}, where97

λβ ≤ λf +
√
mλA‖y‖+ (

√
mλAρ

′ + dλ′2A)β =: λf +
√
mλA‖y‖+ λ′′(A, ρ, ρ′)β. (15)

Above, λf , λA were defined in (4) and98

λ′A := max
‖x‖≤ρ

‖DA(x)‖. (16)

3 Algorithm99

To solve the equivalent formulation of (1) presented in (5), we propose the inexact ALM (iALM),100

detailed in Algorithm 1. At the kth iteration, Step 2 of Algorithm 1 calls a solver that finds an101

approximate stationary point of the augmented Lagrangian Lβk
(·, yk) with the accuracy of εk+1, and102

this accuracy gradually increases in a controlled fashion. The increasing sequence of penalty weights103

{βk}k and the dual update (Steps 4 and 5) are responsible for continuously enforcing the constraints104

in (1). The appropriate choice for {βk}k will be specified in Corrollary Sections A.1 and A.2.105

The particular choice of the dual step sizes {σk}k in Algorithm 1 ensures that the dual variable yk106

remains bounded, see [2] in the ALM literature where a similar dual step size is considered.107
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Algorithm 1 Inexact ALM for solving (1)
Input: Non-decreasing, positive, unbounded sequence {βk}k≥1, stopping thresholds τf , τs > 0.
Initialization: Primal variable x1 ∈ Rd, dual variable y0 ∈ Rm, dual step size σ1 > 0.
for k = 1, 2, . . . do

1. (Update tolerance) εk+1 = 1/βk.
2. (Inexact primal solution) Obtain xk+1 ∈ Rd such that

dist(−∇xLβk
(xk+1, yk), ∂g(xk+1)) ≤ εk+1

for first-order stationarity

λmin(∇xxLβk
(xk+1, yk)) ≥ −εk+1

for second-order-stationarity, if g = 0 in (1).
3. (Update dual step size)

σk+1 = σ1 min
( ‖A(x1)‖ log2 2

‖A(xk+1)‖(k + 1) log2(k + 2)
, 1
)
.

4. (Dual ascent) yk+1 = yk + σk+1A(xk+1).
5. (Stopping criterion) If

dist(−∇xLβk
(xk+1), ∂g(xk+1)) + ‖A(xk+1)‖ ≤ τf ,

for first-order stationarity and if also λmin(∇xxLβk
(xk+1, yk)) ≥ −τs for second-order

stationarity, then quit and return xk+1 as an (approximate) stationary point.
end for

4 Convergence Rate108

This section presents the total iteration complexity of Algorithm 1 for finding first and second-order109

stationary points of problem (1). All the proofs are deferred to Appendix B. Theorem 4.1 characterizes110

the convergence rate of Algorithm 1 for finding stationary points in the number of outer iterations.111

Theorem 4.1. (convergence rate) For integers 2 ≤ k0 ≤ k1, consider the interval K = [k0 :112

k1], and let {xk}k∈K be the output sequence of Algorithm 1 on the interval K.2 Let also ρ :=113

supk∈[K] ‖xk‖.3 Suppose that f and A satisfy (4) and let114

λ′f = max
‖x‖≤ρ

‖∇f(x)‖, λ′A = max
‖x‖≤ρ

‖DA(x)‖, (17)

be the (restricted) Lipschitz constants of f and A, respectively. With ν > 0, assume that115

ν‖A(xk)‖ ≤ dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
, (18)

for every k ∈ K. We consider two cases:116

• If a first-order solver is used in Step 2, then xk is an (εk,f , βk) first-order stationary point of (1)117

with118

εk,f =
1

βk−1

(
2(λ′f + λ′Aymax)(1 + λ′Aσk)

ν
+ 1

)
=:

Q(f, g, A, σ1)

βk−1
, (19)

for every k ∈ K, where ymax(x1, y0, σ1) is specified in (40) due to the limited space.119

• If a second-order solver is used in Step 2, then xk is an (εk,f , εk,s, βk) second-order stationary120

point of (1) with εk,s specified above and with121

εk,s = εk−1 + σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
=
ν + σk

√
mλA2λ′f + 2λ′Aymax

νβk−1
=:

Q′(f, g, A, σ1)

βk−1
.

(20)
2The choice of k1 = ∞ is valid here too.
3If necessary, to ensure that ρ <∞, one can add a small factor of ‖x‖2 to Lβ in (6). Then it is easy to verify

that the iterates of Algorithm 1 remain bounded, provided that the initial penalty weight β0 is large enough,
supx ‖∇f(x)‖/‖x‖ <∞, supx ‖A(x)‖ <∞, and supx ‖DA(x)‖ <∞.
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Theorem 4.1 states that Algorithm 1 converges to a (first- or second-) order stationary point of (1)122

at the rate of 1/βk, further specified in Corollary 4.2 and Corollary 4.3. A few remarks are in order123

about Theorem 4.1.124

Regularity. The key geometric condition in Theorem 4.1 is (18) which, broadly speaking, ensures125

that the primal updates of Algorithm 1 reduce the feasibility gap as the penalty weight βk grows. We126

will verify this condition for several examples in Section 6.127

This condition in (18) is closely related to those in the existing literature. In the special case where128

g = 0 in (1), it is easy to verify that (18) reduces to the Polyak-Lojasiewicz (PL) condition for129

minimizing ‖A(x)‖2 [32]. PL condition itself is a special case of Kurdyka-Lojasiewicz with θ = 1/2,130

see [65, Definition 1.1]. When g = 0, it is also easy to see that (18) is weaker than the Mangasarian-131

Fromovitz (MF) condition in nonlinear optimization [10, Assumption 1]. Moreover, when g is the132

indicator on a convex set, (18) is a consequence of the basic constraint qualification in [54], which133

itself generalizes the MF condition to the case when g is an indicator function of a convex set.134

We may think of (18) as a local condition, which should hold within a neighborhood of the constraint135

set {x : A(x) = 0} rather than everywhere in Rd. There is a constant complexity algorithm in [10]136

to reach this so-called “information zone”, which supplements Theorem 4.1. Lastly, in contrast to137

most conditions in the nonconvex optimization literature, such as [25], the condition in (18) appears138

to be easier to verify, as we see in the sequel.139

Penalty method. A classical algorithm to solve (1) is the penalty method, which is characterized by140

the absence of the dual variable (y = 0) in (6). Indeed, ALM can be interpreted as an adaptive penalty141

or smoothing method with a variable center determined by the dual variable. It is worth noting that,142

with the same proof technique, one can establish the same convergence rate of Theorem 4.1 for the143

penalty method. However, while both methods have the same convergence rate in theory, we ignore144

the uncompetitive penalty method since it is significantly outperformed by iALM in practice.145

Computational complexity. Theorem 4.1 specifies the number of (outer) iterations that Algorithm 1146

requires to reach a near-stationary point of problem (6) with a prescribed precision and, in particular,147

specifies the number of calls made to the solver in Step 2. In this sense, Theorem 4.1 does not148

fully capture the computational complexity of Algorithm 1, as it does not take into account the149

computational cost of the solver in Step 2.150

To better understand the total iteration complexity of Algorithm 1, we consider two scenarios in the151

following. In the first scenario, we take the solver in Step 2 to be the Accelerated Proximal Gradient152

Method (APGM), a well-known first-order algorithm [27]. In the second scenario, we will use the153

second-order trust region method developed in [17]. We have the following two corollaries showing154

the total complexity of our algorithm to reach first and second-order stationary points. Appendix ??155

contains the proofs and more detailed discussion for the complexity results.156

Corollary 4.2 (First-order optimality). For b > 1, let βk = bk for every k. If we use APGM from [27]157

for Step 2 of Algorithm 1, the algorithm finds an (εf , βk) first-order stationary point, after T calls to158

the first-order oracle, where159

T = O
(
Q3ρ2

ε3
logb

(
Q

ε

))
= Õ

(
Q3ρ2

ε3

)
. (21)

For Algorithm 1 to reach a near-stationary point with an accuracy of εf in the sense of (??) and160

with the lowest computational cost, we therefore need to perform only one iteration of Algorithm 1,161

with β1 specified as a function of εf by (19) in Theorem 4.1. In general, however, the constants in162

(19) are unknown and this approach is thus not feasible. Instead, the homotopy approach taken by163

Algorithm 1 ensures achieving the desired accuracy by gradually increasing the penalty weight. This164

homotopy approach increases the computational cost of Algorithm 1 only by a factor logarithmic in165

the εf , as detailed in the proof of Corollary 4.2.166

Corollary 4.3 (Second-order optimality). For b > 1, let βk = bk for every k. We assume that167

Lβ(x1, y)−min
x
Lβ(x, y) ≤ Lu, ∀β. (22)

If we use the trust region method from [17] for Step 2 of Algorithm 1, the algorithm finds an168

ε-second-order stationary point of (1) in T calls to the second-order oracle where169

T = O
(
LuQ

′5

ε5
logb

(
Q′

ε

))
= Õ

(
LuQ

′5

ε5

)
. (23)
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Remark. These complexity results for first and second-order are stationarity with respect to (6). We170

note that these complexities match [18] and [7]. However, the stationarity criteria and the definition171

of dual variable in these papers differ from ours. We include more discussion on this in the Appendix.172

5 Related Work173

ALM has a long history in the optimization literature, dating back to [29, 51]. In the special case174

of (1) with a convex function f and a linear operator A, standard, inexact, and linearized versions of175

ALM have been extensively studied [36, 41, 60, 64].176

Classical works on ALM focused on the general template of (1) with nonconvex f and nonlinear A,177

with arguably stronger assumptions and required exact solutions to the subproblems of the form (7),178

which appear in Step 2 of Algorithm 1, see for instance [4].179

A similar analysis was conducted in [22] for the general template of (1). The authors considered180

inexact ALM and proved convergence rates for the outer iterates, under specific assumptions on the181

initialization of the dual variable. However, in contrast, the authors did not analyze how to solve the182

subproblems inexactly and did not provide total complexity results with verifiable conditions.183

Problem (1) with similar assumptions to us is also studied in [7] and [18] for first-order and second-184

order stationarity, respectively, with explicit iteration complexity analysis. As we have mentioned185

in Section 4, our iteration complexity results matches these theoretical algorithms with a simpler186

algorithm and a simpler analysis. In addition, these algorithms require setting final accuracies since187

they utilize this information in the algorithm while our Algorithm 1 does not set accuracies a priori.188

[16] also considers the same template (1) for first-order stationarity with a penalty-type method189

instead of ALM. Even though the authors show O(1/ε2) complexity, this result is obtained by190

assuming that the penalty parameter remains bounded. We note that such an assumption can also be191

used to improve our complexity results to match theirs.192

[10] studies the general template (1) with specific assumptions involving local error bound conditions193

for the (1). These conditions are studied in detail in [9], but their validity for general SDPs (2) has194

never been established. This work also lacks the total iteration complexity analysis presented here.195

Another work [20] focused on solving (1) by adapting the primal-dual method of Chambolle and196

Pock [19]. The authors proved the convergence of the method and provided convergence rate by197

imposing error bound conditions on the objective function that do not hold for standard SDPs.198

[14, 15] is the first work that proposes the splitting X = UU> for solving SDPs of the form (2).199

Following these works, the literature on Burer-Monteiro (BM) splitting for the large part focused on200

using ALM for solving the reformulated problem (3).201

However, this proposal has a few drawbacks: First, it requires exact solutions in Step 2 of Algorithm 1202

in theory, which in practice is replaced with inexact solutions. Second, their results only establish con-203

vergence without providing the rates. In this sense, our work provides a theoretical understanding of204

the BM splitting with inexact solutions to Step 2 of Algorithm 1 and complete iteration complexities.205

[6, 48] are among the earliest efforts to show convergence rates for BM splitting, focusing on206

the special case of SDPs without any linear constraints. For these specific problems, they prove207

the convergence of gradient descent to global optima with convergence rates, assuming favorable208

initialization. These results, however, do not apply to general SDPs of the form (2) where the difficulty209

arises due to the linear constraints.210

Another popular method for solving SDPs are due to [12, 11, 13], focusing on the case where the211

constraints in (1) can be written as a Riemannian manifold after BM splitting. In this case, the authors212

apply the Riemannian gradient descent and Riemannian trust region methods for obtaining first- and213

second-order stationary points, respectively. They obtain O(1/ε2) complexity for finding first-order214

stationary points and O(1/ε3) complexity for finding second-order stationary points.215

While these complexities appear better than ours, the smooth manifold requirement in these works216

is indeed restrictive. In particular, this requirement holds for max-cut and generalized eigenvalue217

problems, but it is not satisfied for other important SDPs such as quadratic programming (QAP),218

optimal power flow and clustering with general affine constraints. In addition, as noted in [11], per219

iteration cost of their method for max-cut problem is an astronomical O(d6).220
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Lastly, there also exists a line of work for solving SDPs in their original convex formulation, in a221

storage efficient way [42, 67, 68]. These works have global optimality guarantees by their virtue of222

directly solving the convex formulation. On the downside, these works require the use of eigenvalue223

routines and exhibit significantly slower convergence as compared to nonconvex approaches [31].224

6 Numerical Evidence225

We first begin with a caveat: It is known that quasi-Newton methods, such as BFGS and lBFGS,226

might not converge for nonconvex problems [21, 38]. For this reason, we have used the trust region227

method as the second-order solver in our analysis in Section 4, which is well-studied for nonconvex228

problems [17]. Empirically, however, BFGS and lBGFS are extremely successful and we have229

therefore opted for those solvers in this section since the subroutine does not affect Theorem 4.1 as230

long as the subsolver performs well in practice.231

6.1 Clustering232

Given data points {zi}ni=1, the entries of the corresponding Euclidean distance matrix D ∈ Rn×n233

are Di,j = ‖zi − zj‖2. Clustering is then the problem of finding a co-association matrix Y ∈ Rn×n234

such that Yij = 1 if points zi and zj are within the same cluster and Yij = 0 otherwise. In [50], the235

authors provide a SDP relaxation of the clustering problem, specified as236

min
Y ∈Rnxn

tr(DY ) s.t. Y 1 = 1, tr(Y ) = s, Y � 0, Y ≥ 0, (24)

where s is the number of clusters and Y is both positive semidefinite and has nonnegative entries.237

Standard SDP solvers do not scale well with the number of data points n, since they often require238

projection onto the semidefinite cone with the complexity of O(n3). We instead use the BM239

factorization to solve (24), sacrificing convexity to reduce the computational complexity. More240

specifically, we solve the program241

min
V ∈Rn×r

tr(DV V >) s.t. V V >1 = 1, ‖V ‖2F ≤ s, V ≥ 0, (25)

where 1 ∈ Rn is the vector of all ones. Note that Y ≥ 0 in (24) is replaced above by the much242

stronger but easier-to-enforce constraint V ≥ 0 in (25), see [35] for the reasoning behind this243

relaxation. Now, we can cast (25) as an instance of (1). Indeed, for every i ≤ n, let xi ∈ Rr denote244

the ith row of V . We next form x ∈ Rd with d = nr by expanding the factorized variable V , namely,245

x := [x>1 , · · · , x>n ]> ∈ Rd, and then set246

f(x) =

n∑
i,j=1

Di,j 〈xi, xj〉 , g = δC , A(x) = [x>1

n∑
j=1

xj − 1, · · · , x>n
n∑
j=1

xj − 1]>,

where C is the intersection of the positive orthant in Rd with the Euclidean ball of radius
√
s. In247

Appendix D, we verify that Theorem 4.1 applies to (1) with f, g, A specified above.248

In our simulations, we use two different solvers for Step 2 of Algorithm 1, namely, APGM and249

lBFGS. APGM is a solver for nonconvex problems of the form (7) with convergence guarantees250

to first-order stationarity, as discussed in Section 4. lBFGS is a limited-memory version of BFGS251

algorithm in [24] that approximately leverages the second-order information of the problem. We252

compare our approach against the following convex methods:253

• HCGM: Homotopy-based Conditional Gradient Method in [68] which directly solves (24).254

• SDPNAL+: A second-order augmented Lagrangian method for solving SDP’s with nonneg-255

ativity constraints [66].256

As for the dataset, our experimental setup is similar to that described by [39]. We use the publicly-257

available fashion-MNIST data in [63], which is released as a possible replacement for the MNIST258

handwritten digits. Each data point is a 28× 28 gray-scale image, associated with a label from ten259

classes, labeled from 0 to 9. First, we extract the meaningful features from this dataset using a simple260

two-layer neural network with a sigmoid activation function. Then, we apply this neural network to261

1000 test samples from the same dataset, which gives us a vector of length 10 for each data point,262
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Figure 1: Clustering running time comparison.

where each entry represents the posterior probability for each class. Then, we form the `2 distance263

matrix D from these probability vectors. The solution rank for the template (24) is known and it264

is equal to number of clusters k [35, Theorem 1]. As discussed in [59], setting rank r > k leads265

more accurate reconstruction in expense of speed. Therefore, we set the rank to 20. The results are266

depicted in Figure 1. We implemented 3 algorithms on MATLAB and used the software package267

for SDPNAL+ which contains mex files. It is predictable that the performance of our nonconvex268

approach would even improve by using mex files.269

6.2 Additional demonstrations270

We provide several additional experiments in Appendix E. Section E.1 discusses a novel nonconvex271

relaxation of the standard basis pursuit template which performs comparable to the state of the art272

convex solvers. In Section E.2, we provide fast numerical solutions to the generalized eigenvalue273

problem. In Section E.3, we give a contemporary application example that our template applies,274

namely, denoising with generative adversarial networks. Finally, we provide improved bounds for275

sparse quadratic assignment problem instances in Section E.4.276

7 Conclusions277

In this work, we have proposed and analyzed an inexact augmented Lagrangian method for solving278

nonconvex optimization problems with nonlinear constraints. We prove convergence to the first279

and second order stationary points of the augmented Lagrangian function, with explicit complexity280

estimates. Even though the relation of stationary points and global optima is not well-understood in281

the literature, we find out that the algorithm has fast convergence behavior to either global minima or282

local minima in a wide variety of numerical experiments.283
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A Complexity Results442

A.1 First-Order Optimality443

Let us first consider the case where the solver in Step 2 is is the first-order algorithm APGM, described444

in detail in [27]. At a high level, APGM makes use of ∇xLβ(x, y) in (6), the proximal operator445

proxg , and the classical Nesterov acceleration [43] to reach first-order stationarity for the subproblem446

in (7). Suppose that g = δX is the indicator function on a bounded convex set X ⊂ Rd and let447

ρ = max
x∈X
‖x‖, (26)

be the radius of a ball centered at the origin that includes X . Then, adapting the results in [27] to our448

setup, APGM reaches xk in Step 2 of Algorithm 1 after449

O

(
λ2
βk
ρ2

εk+1

)
(27)

(inner) iterations, where λβk
denotes the Lipschitz constant of ∇xLβk

(x, y), bounded in (15). For450

the clarity of the presentation, we have used a looser bound in (27) compared to [27]. Using (27), we451

derive the following corollary, describing the total iteration complexity of Algorithm 1 in terms of the452

number calls made to the first-order oracle in APGM.453

Corollary A.1. For b > 1, let βk = bk for every k. If we use APGM from [27] for Step 2 of454

Algorithm 1, the algorithm finds an (εf , βk) first-order stationary point, after T calls to the first-order455

oracle, where456

T = O
(
Q3ρ2

ε3
logb

(
Q

ε

))
= Õ

(
Q3ρ2

ε3

)
. (28)

Proof. Let K denote the number of (outer) iterations of Algorithm 1 and let εf denote the desired457

accuracy of Algorithm 1, see (??). Recalling Theorem 4.1, we can then write that458

εf =
Q

βK
, (29)

or, equivalently, βK = Q/εf . We now count the number of total (inner) iterations T of Algorithm 1459

to reach the accuracy εf . From (15) and for sufficiently large k, recall that λβk
≤ λ′′βk is the460

smoothness parameter of the augmented Lagrangian. Then, from (27) ad by summing over the outer461

iterations, we bound the total number of (inner) iterations of Algorithm 1 as462

T =

K∑
k=1

O

(
λ2
βk−1

ρ2

εk

)

=

K∑
k=1

O
(
β3
k−1ρ

2
)

(Step 1 of Algorithm 1)

≤ O
(
Kβ3

K−1ρ
2
)

({βk}k is increasing)

≤ O

(
KQ3ρ2

ε3f

)
. (see (29)) (30)

In addition, if we specify βk = bk for all k, we can further refine T . Indeed,463

βK = bK =⇒ K = logb

(
Q

εf

)
, (31)

which, after substituting into (30) gives the final bound in Corollary 4.2.464

A.2 Second-Order Optimality465

Let us now consider the second-order optimality case where the solver in Step 2 is the the trust region466

method developed in [17]. Trust region method minimizes a quadratic approximation of the function467
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within a dynamically updated trust-region radius. Second-order trust region method that we consider468

in this section makes use of Hessian (or an approximation of Hessian) of the augmented Lagrangian469

in addition to first order oracles.470

As shown in [45], finding approximate second-order stationary points of convex-constrained problems471

is in general NP-hard. For this reason, we focus in this section on the special case of (1) with g = 0.472

Let us compute the total computational complexity of Algorithm 1 with the trust region method in473

Step 2, in terms of the number of calls made to the second-order oracle. By adapting the result in [17]474

to our setup, we find that the number of (inner) iterations required in Step 2 of Algorithm 1 to produce475

xk+1 is476

O

(
λ2
βk,H

(Lβk
(x1, y)−minx Lβk

(x, y))

ε3k

)
, (32)

where λβ,H is the Lipschitz constant of the Hessian of the augmented Lagrangian, which is of the477

order of β, as can be proven similar to Lemma 2.1 and x1 is the initial iterate of the given outer loop.478

In [17], the term Lβ(x1, y)−minx Lβ(x, y) is bounded by a constant independent of ε. We assume479

a uniform bound for this quantity for every βk, instead of for one value of βk as in [17]. Using (32)480

and Theorem 4.1, we arrive at the following:481

Corollary A.2. For b > 1, let βk = bk for every k. We assume that482

Lβ(x1, y)−min
x
Lβ(x, y) ≤ Lu, ∀β. (33)

If we use the trust region method from [17] for Step 2 of Algorithm 1, the algorithm finds an483

ε-second-order stationary point of (1) in T calls to the second-order oracle where484

T = O
(
LuQ

′5

ε5
logb

(
Q′

ε

))
= Õ

(
LuQ

′5

ε5

)
. (34)

Before closing this section, we note that the remark after Corollary 4.2 applies here as well.485

A.3 Approximate optimality of (1).486

Corollary 4.2 establishes the iteration complexity of Algorithm 1 to reach approximate first-order487

stationarity for the equivalent formulation of (1) presented in (5). Unlike the exact case, approximate488

first-order stationarity in (5) does not immediately lend itself to approximate stationarity in (1), and489

the study of approximate stationarity for the penalized problem (special case of our setting with dual490

variable set to 0) has also precedent in [5].491

However, it is not difficult to verify that, with the more aggressive regime of εk+1 = 1/β2
k in Step492

1 of Algorithm 1, one can achieve ε-first-order stationarity for (1) with the iteration complexity493

of T = Õ(Q3ρ2/ε6) in Corollary 4.2. Note that this conversion is by a naive computation using494

loose bounds rather than using duality arguments for a tight conversion. For a precedent in convex495

optimization for relating the convergence in augmented Lagrangian to the constrained problem using496

duality, see [61].497

For the second-order case, it is in general not possible to establish approximate second-order optimal-498

ity for (5) from Corollary 4.3, with the exception of linear constraints.499

B Proof of Theorem 4.1500

For every k ≥ 2, recall from (6) and Step 2 of Algorithm 1 that xk satisfies501

dist(−∇f(xk)−DA(xk)>yk−1

− βk−1DA(xk)>A(xk), ∂g(xk))

= dist(−∇xLβk−1
(xk, yk−1), ∂g(xk)) ≤ εk. (35)

With an application of the triangle inequality, it follows that502

dist(−βk−1DA(xk)>A(xk), ∂g(xk))

≤ ‖∇f(xk)‖+ ‖DA(xk)>yk−1‖+ εk, (36)
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which in turn implies that503

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1)

≤ ‖∇f(xk)‖
βk−1

+
‖DA(xk)>yk−1‖

βk−1
+

εk
βk−1

≤
λ′f + λ′A‖yk−1‖+ εk

βk−1
, (37)

where λ′f , λ
′
A were defined in (17). We next translate (37) into a bound on the feasibility gap ‖A(xk)‖.504

Using the regularity condition (18), the left-hand side of (37) can be bounded below as505

dist(−DA(xk)>A(xk), ∂g(xk)/βk−1) ≥ ν‖A(xk)‖. (see (18)) (38)
By substituting (38) back into (37), we find that506

‖A(xk)‖ ≤
λ′f + λ′A‖yk−1‖+ εk

νβk−1
. (39)

In words, the feasibility gap is directly controlled by the dual sequence {yk}k. We next establish that507

the dual sequence is bounded. Indeed, for every k ∈ K, note that508

‖yk‖ = ‖y0 +

k∑
i=1

σiA(xi)‖ (Step 5 of Algorithm 1)

≤ ‖y0‖+

k∑
i=1

σi‖A(xi)‖ (triangle inequality)

≤ ‖y0‖+

k∑
i=1

‖A(x1)‖ log2 2

k log2(k + 1)
(Step 4)

≤ ‖y0‖+ c‖A(x1)‖ log2 2 =: ymax, (40)
where509

c ≥
∞∑
i=1

1

k log2(k + 1)
. (41)

Substituting (40) back into (39), we reach510

‖A(xk)‖ ≤
λ′f + λ′Aymax + εk

νβk−1

≤
2λ′f + 2λ′Aymax

νβk−1
, (42)

where the second line above holds if k0 is large enough, which would in turn guarantees that511

εk = 1/βk−1 is sufficiently small since {βk}k is increasing and unbounded. It remains to control512

the first term in (??). To that end, after recalling Step 2 of Algorithm 1 and applying the triangle513

inequality, we can write that514

dist(−∇xLβk−1
(xk, yk), ∂g(xk))

≤ dist(−∇xLβk−1
(xk, yk−1), ∂g(xk))

+ ‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖. (43)
The first term on the right-hand side above is bounded by εk, by Step 5 of Algorithm 1. For the515

second term on the right-hand side of (43), we write that516

‖∇xLβk−1
(xk, yk)−∇xLβk−1

(xk, yk−1)‖
= ‖DA(xk)>(yk − yk−1)‖ (see (6))

≤ λ′A‖yk − yk−1‖ (see (17))

= λ′Aσk‖A(xk)‖ (see Step 5 of Algorithm 1)

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax). (see (42)) (44)
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By combining (43,44), we find that517

dist(∇xLβk−1
(xk, yk), ∂g(xk))

≤ 2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk. (45)

By combining (42,45), we find that518

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤
(

2λ′Aσk
νβk−1

(λ′f + λ′Aymax) + εk

)
+ 2

(
λ′f + λ′Aymax

νβk−1

)
. (46)

Applying σk ≤ σ1, we find that519

dist(−∇xLβk−1
(xk, yk), ∂g(xk)) + ‖A(xk)‖

≤ 2λ′Aσ1 + 2

νβk−1
(λ′f + λ′Aymax) + εk. (47)

For the second part of the theorem, we use the Weyl’s inequality and Step 5 of Algorithm 1 to write520

λmin(∇xxLβk−1
(xk, yk−1)) ≥ λmin(∇xxLβk−1

(xk, yk))

− σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖. (48)

The first term on the right-hand side is lower bounded by −εk−1 by Step 2 of Algorithm 1. We next521

bound the second term on the right-hand side above as522

σk‖
m∑
i=1

Ai(xk)∇2Ai(xk)‖

≤ σk
√
mmax

i
‖Ai(xk)‖‖∇2Ai(xk)‖

≤ σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

where the last inequality is due to (4,42). Plugging into (48) gives523

λmin(∇xxLβk−1
(xk, yk−1))

≥ −εk−1 − σk
√
mλA

2λ′f + 2λ′Aymax

νβk−1
,

which completes the proof of Theorem 4.1.524

C Proof of Lemma 2.1525

Proof. Note that526

Lβ(x, y) = f(x) +

m∑
i=1

yiAi(x) +
β

2

m∑
i=1

(Ai(x))2, (49)

which implies that527

∇xLβ(x, y)

= ∇f(x) +

m∑
i=1

yi∇Ai(x) +
β

2

m∑
i=1

Ai(x)∇Ai(x)

= ∇f(x) +DA(x)>y + βDA(x)>A(x), (50)
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where DA(x) is the Jacobian of A at x. By taking another derivative with respect to x, we reach528

∇2
xLβ(x, y) = ∇2f(x) +

m∑
i=1

(yi + βAi(x))∇2Ai(x)

+ β

m∑
i=1

∇Ai(x)∇Ai(x)>. (51)

It follows that529

‖∇2
xLβ(x, y)‖

≤ ‖∇2f(x)‖+ max
i
‖∇2Ai(x)‖ (‖y‖1 + β‖A(x)‖1)

+ β

m∑
i=1

‖∇Ai(x)‖2

≤ λh +
√
mλA (‖y‖+ β‖A(x)‖) + β‖DA(x)‖2F . (52)

For every x such that ‖x‖ ≤ ρ and ‖A(x)‖ ≤ ρ, we conclude that530

‖∇2
xLβ(x, y)‖ ≤ λf +

√
mλA (‖y‖+ βρ′) + β max

‖x‖≤ρ
‖DA(x)‖2F , (53)

which completes the proof of Lemma 2.1.531

D Clustering532

We only verify the condition in (18) here. Note that533

A(x) = V V >1− 1, (54)
534

DA(x) =

 w1,1x
>
1 · · · w1,nx

>
1

...
wn,1x

>
n · · · wn,n1x>n


= [ V · · · V ] +

 x>1
. . .

x>n

 , (55)

where wi.i = 2 and wi,j = 1 for i 6= j. In the last line above, n copies of V appear and the last535

matrix above is block-diagonal. For xk, define Vk accordingly and let xk,i be the ith row of Vk.536

Consequently,537

DA(xk)>A(xk) =

 (V >k Vk − In)V >k 1
...

(V >k Vk − In)V >k 1


+

 xk,1(VkV
>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n

 , (56)

where In ∈ Rn×n is the identity matrix. Let us make a number of simplifying assumptions. First, we538

assume that ‖xk‖ <
√
s (which can be enforced in the iterates by replacing C with (1− ε)C for a539

small positive ε in the subproblems). Under this assumption, it follows that540

(∂g(xk))i =

{
0 (xk)i > 0

{a : a ≤ 0} (xk)i = 0,
i ≤ d. (57)

Second, we assume that Vk has nearly orthonormal columns, namely, V >k Vk ≈ In. This can also be541

enforced in each iterate of Algorithm 1 and naturally corresponds to well-separated clusters. While a542
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more fine-tuned argument can remove these assumptions, they will help us simplify the presentation543

here. Under these assumptions, the (squared) right-hand side of (18) becomes544

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

=
∥∥∥(−DA(xk)>A(xk)

)
+

∥∥∥2

(a+ = max(a, 0))

=

∥∥∥∥∥∥∥
 xk,1(VkV

>
k 1− 1)1

...
xk,n(VkV

>
k 1− 1)n


∥∥∥∥∥∥∥

2

(xk ∈ C ⇒ xk ≥ 0)

=

n∑
i=1

‖xk,i‖2(VkV
>
k 1− 1)2

i

≥ min
i
‖xk,i‖2 ·

n∑
i=1

(VkV
>
k 1− 1)2

i

= min
i
‖xk,i‖2 · ‖VkV >k 1− 1‖2. (58)

Therefore, given a prescribed ν, ensuring mini ‖xk,i‖ ≥ ν guarantees (18). When the algorithm545

is initialized close enough to the constraint set, there is indeed no need to separately enforce (58).546

In practice, often n exceeds the number of true clusters and a more intricate analysis is required to547

establish (18) by restricting the argument to a particular subspace of Rn.548

E Additional Experiments549

E.1 Basis Pursuit550

Basis Pursuit (BP) finds sparsest solutions of an under-determined system of linear equations by551

solving552

min
z
‖z‖1 s.t. Bz = b, (59)

where B ∈ Rn×d and b ∈ Rn. Various primal-dual convex optimization algorithms are available553

in the literature to solve BP, including [60, 19]. We compare our algorithm against state-of-the-art554

primal-dual convex methods for solving (59), namely, Chambole-Pock [19], ASGARD [61] and555

ASGARD-DL [60].556

Here, we take a different approach and cast (59) as an instance of (1). Note that any z ∈ Rd557

can be decomposed as z = z+ − z−, where z+, z− ∈ Rd are the positive and negative parts of558

z, respectively. Then consider the change of variables z+ = u◦21 and z− = u◦22 ∈ Rd, where ◦559

denotes element-wise power. Next, we concatenate u1 and u2 as x := [u>1 , u
>
2 ]> ∈ R2d and define560

B := [B,−B] ∈ Rn×2d. Then, (59) is equivalent to (1) with561

f(x) =‖x‖2, g(x) = 0, s.t. A(x) = Bx◦2 − b. (60)

We draw the entries of B independently from a zero-mean and unit-variance Gaussian distribution.562

For a fixed sparsity level k, the support of z∗ ∈ Rd and its nonzero amplitudes are also drawn from563

the standard Gaussian distribution. Then the measurement vector is created as b = Bz + ε, where ε564

is the noise vector with entries drawn independently from the zero-mean Gaussian distribution with565

variance σ2 = 10−6.566

The results are compiled in Figure 2. Clearly, the performance of Algorithm 1 with a second-order567

solver for BP is comparable to the rest. It is, indeed, interesting to see that these type of nonconvex568

relaxations gives the solution of convex one and first order methods succeed.569

Discussion: The true potential of our reformulation is in dealing with more structured norms rather570

than `1, where computing the proximal operator is often intractable. One such case is the latent group571
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Figure 2: Basis Pursuit

lasso norm [46], defined as572

‖z‖Ω =

I∑
i=1

‖zΩi
‖,

where {Ωi}Ii=1 are (not necessarily disjoint) index sets of {1, · · · , d}. Although not studied here, we573

believe that the nonconvex framework presented in this paper can serve to solve more complicated574

problems, such as the latent group lasso. We leave this research direction for future work.575

Condition verification: In the sequel, we verify that Theorem 4.1 indeed applies to (1) with the576

above f,A, g. Note that577

DA(x) = 2Bdiag(x), (61)

where diag(x) ∈ R2d×2d is the diagonal matrix formed by x. The left-hand side of (18) then reads as578

dist
(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)
= dist

(
−DA(xk)>A(xk), {0}

)
(g ≡ 0)

= ‖DA(xk)>A(xk)‖

= 2‖diag(xk)B
>

(Bx◦2k − b)‖. (see (61)) (62)

To bound the last line above, let x∗ be a solution of (1) and note that Bx◦2∗ = b by definition. Let also579

zk, z∗ ∈ Rd denote the vectors corresponding to xk, x∗. Corresponding to xk, also define uk,1, uk,2580

naturally and let |zk| = u◦2k,1 + u◦2k,2 ∈ Rd be the vector of amplitudes of zk. To simplify matters, let581

us assume also that B is full-rank. We then rewrite the norm in the last line of (62) as582

‖diag(xk)B
>

(Bx◦2k − b)‖2

= ‖diag(xk)B
>
B(x◦2k − x◦2∗ )‖2 (Bx◦2∗ = b)

= ‖diag(xk)B
>
B(xk − x∗)‖2

= ‖diag(uk,1)B>B(zk − z∗)‖2

+ ‖diag(uk,2)B>B(zk − z∗)‖2

= ‖diag(u◦2k,1 + u◦2k,2)B>B(zk − z∗)‖2

= ‖diag(|zk|)B>B(zk − z∗)‖2

≥ ηn(Bdiag(|zk|))2‖B(zk − z∗)‖2

= ηn(Bdiag(|zk|))2‖Bzk − b‖2 (Bz∗ = Bx◦2∗ = b)

≥ min
|T |=n

ηn(BT ) · |zk,(n)|2‖Bzk − b‖2, (63)
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where ηn(·) returns the nth largest singular value of its argument. In the last line above, BT is the583

restriction of B to the columns indexed by T of size n. Moreover, zk,(n) is the nth largest entry of z584

in magnitude. Given a prescribed ν, (18) therefore holds if585

|zk,(n)| ≥
ν

2
√

min|T |=n ηn(BT )
, (64)

for every iteration k. If Algorithm 1 is initialized close enough to the solution z∗ and the entries of586

z∗ are sufficiently large in magnitude, there will be no need to directly enforce (64).587

E.2 Generalized Eigenvalue Problem588

(i) C : Gaussian iid (ii) C : Polynomial decay (iii) C : Exponential decay
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Figure 3: (Top) Objective convergence for calculating top generalized eigenvalue and eigenvector ofB
and C. (Bottom) Eigenvalue structure of the matrices. For (i),(ii) and (iii), C is positive semidefinite;
for (iv), (v) and (vi), C contains negative eigenvalues. [(i): Generated by taking symmetric part of
iid Gaussian matrix. (ii): Generated by randomly rotating diag(1−p, 2−p, · · · , 1000−p)(p = 1). (iii):
Generated by randomly rotating diag(10−p, 10−2p, · · · , 10−1000p)(p = 0.0025).]

Generalized eigenvalue problem has extensive applications in machine learning, statistics and data589

analysis [26]. The well-known nonconvex formulation of the problem is [13] given by590 {
min
x∈Rn

x>Cx

x>Bx = 1,
(65)
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where B,C ∈ Rn×n are symmetric matrices and B is positive definite, namely, B � 0. The591

generalized eigenvector computation is equivalent to performing principal component analysis (PCA)592

of C in the norm B. It is also equivalent to computing the top eigenvector of symmetric matrix593

S = B−1/2CB1/2 and multiplying the resulting vector by B−1/2. However, for large values of n,594

computing B−1/2 is extremely expensive. The natural convex SDP relaxation for (65) involves lifting595

Y = xx> and removing the nonconvex rank(Y ) = 1 constraint, namely,596 {
min

Y ∈Rn×n
tr(CY )

tr(BY ) = 1, X � 0.
(66)

Here, however, we opt to directly solve (65) because it fits into our template with597

f(x) =x>Cx, g(x) = 0,

A(x) =x>Bx− 1. (67)

We compare our approach against three different methods: manifold based Riemannian gradient598

descent and Riemannian trust region methods in [11] and the linear system solver in [26], abbrevated599

as GenELin. We have used Manopt software package in [? ] for the manifold based methods. For600

GenELin, we have utilized Matlab’s backslash operator as the linear solver. The results are compiled601

in Figure 3.602

Condition verification: Here, we verify the regularity condition in (18) for problem (65). Note603

that604

DA(x) = (2Bx)>. (68)

Therefore,605

dist

(
−DA(xk)>A(xk),

∂g(xk)

βk−1

)2

= dist
(
−DA(xk)>A(xk), {0}

)2
(g ≡ 0)

= ‖DA(xk)>A(xk)‖2

= ‖2Bxk(x>k Bxk − 1)‖2 (see (68))

= 4(x>k Bxk − 1)2‖Bxk‖2

= 4‖Bxk‖2‖A(xk)‖2 (see (67))

≥ ηmin(B)2‖xk‖2‖A(xk)‖2, (69)

where ηmin(B) is the smallest eigenvalue of the positive definite matrixB. Therefore, for a prescribed606

ν, the regularity condition in (18) holds with ‖xk‖ ≥ ν/ηmin for every k. If the algorithm is initialized607

close enough to the constraint set, there will be again no need to directly enforce this latter condition.608

E.3 `∞ Denoising with a Generative Prior609

The authors of [55, 30] have proposed to project onto the range of a Generative Adversarial network610

(GAN) [28], as a way to defend against adversarial examples. For a given noisy observation x∗ + η,611

they consider a projection in the `2 norm. We instead propose to use our augmented Lagrangian612

method to denoise in the `∞ norm, a much harder task:613

min
x,z

‖x∗ + η − x‖∞
s.t. x = G(z).

(70)

We use a pretrained generator for the MNIST dataset, given by a standard deconvolutional neural614

network architecture [52]. We compare the succesful optimizer Adam [34] and gradient Descent615

against our method. Our algorithm involves two forward and one backward pass through the network,616

as oposed to Adam that requires only one forward/backward pass. For this reason we let our algorithm617

run for 2000 iterations, and Adam and GD for 3000 iterations. Both Adam and gradient descent618

generate a sequence of feasible iterates xt = G(zt). For this reason we plot the objective evaluated at619

the point G(zt) vs iteration count in figure 4. Our method successfully minimizes the objective value,620

while Adam and GD do not.621
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Figure 4: Augmented Lagrangian vs Adam and Gradient descent for `∞ denoising

E.4 Quadratic assginment problem622

Let K, L be n× n symmetric metrices. QAP in its simplest form can be written as623

max tr(KPLP ), subject to P be a permutation matrix (71)

A direct approach for solving (71) involves a combinatorial search. To get the SDP relaxation of (71),624

we will first lift the QAP to a problem involving a larger matrix. Observe that the objective function625

takes the form626

tr((K ⊗ L)(vec(P )vec(P>))),

where ⊗ denotes the Kronecker product. Therefore, we can recast (71) as627

tr((K ⊗ L)Y ) subject to Y = vec(P )vec(P>), (72)

where P is a permutation matrix. We can relax the equality constraint in (72) to a semidefinite628

constraint and write it in an equivalent form as629

X =

[
1 vec(P )>

vec(P ) Y

]
� 0 for a symmetricX ∈ S(n2+1)×(n2+1)

We now introduce the following constraints such that630

Bk(X) = bk, bk ∈ Rmk (73)

to make sure X has a proper structure. Here, Bk is a linear operator on X and the total number of631

constraints is m =
∑
kmk. Hence, SDP relaxation of the quadratic assignment problem takes the632

form,633

max 〈C,X〉
subject to P1 = 1, 1>P = 1, P ≥ 0

trace1(Y ) = I trace2(Y ) = I

vec(P ) = diag(Y )

trace(Y ) = n

[
1 vec(P )>

vec(P ) Y

]
� 0, (74)

where trace1(.) and trace2(.) are partial traces satisfying,

trace1(K ⊗ L) = trace(K)L and trace2(K ⊗ L) = Ktrace(L)
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trace∗1(T ) = I ⊗ T and trace∗2(T ) = T ⊗ I
1st set of equalities are due to the fact that permutation matrices are doubly stochastic. 2nd set of634

equalities are to ensure permutation matrices are orthogonal, i.e., PP> = P>P = I . 3rd set of635

equalities are to enforce every individual entry of the permutation matrix takes either 0 or 1, i.e.,636

X1,i = Xi,i ∀i ∈ [1, n2 + 1]. . Trace constraint in the last line is to bound the problem domain. By637

concatenating the Bk’s in (73), we can rewrite (74) in standard SDP form as638

max 〈C,X〉
subject to B(X) = b, b ∈ Rm

trace(X) = n+ 1

Xij ≥ 0, i, j G
X � 0, (75)

where G represents the index set for which we introduce the nonnegativities. When G covers the639

wholes set of indices, we get the best approximation to the original problem. However, it becomes640

computationally undesirable as the problem dimension increases. Hence, we remove the redundant641

nonnegativity constraints and enforce it for the indices where Kronecker product between K and L is642

nonzero.643

We penalize the non-negativity constraints and add it to the augmented Lagrangian objective since a644

projection to the positive orthant approach in the low rank space as we did for the clustering does not645

work here.646

We take [23] as the baseline. This is an SDP based approach for solving QAP problems containing
a sparse graph. We compare against the best feasible upper bounds reported in [23] for the given
instances. Here, optimality gap is defined as

%Gap =
|bound− optimal|

optimal
× 100

We used a (relatively) sparse graph data set from the QAP library. We run our low rank algorithm for647

different rank values. rm in each instance corresponds to the smallest integer satisfying the Pataki648

bound [49, 1]. Results are shown in Table 1. Primal feasibility values except for the last instance649

esc128 is less than 10−5 and we obtained bounds at least as good as the ones reported in [23] for650

these problems.651

For esc128, the primal feasibility is ≈ 10−1, hence, we could not manage to obtain a good optimality652

gap due to limited time.653
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Optimality Gap (%)

Data Optimal Value Sparse QAP [23] iAL
r = 10 r = 25 r = 50 r = rm rm

esc16a 68 8.8 11.8 0 0 5.9 157
esc16b 292 0 0 0 0 0 224
esc16c 160 5 5.0 5.0 2.5 3.8 177
esc16d 16 12.5 37.5 0 0 25.0 126
esc16e 28 7.1 7.1 0 14.3 7.1 126
esc16g 26 0 23.1 7.7 0 0 126
esc16h 996 0 0 0 0 0 224
esc16i 14 0 0 0 14.3 0 113
esc16j 8 0 0 0 0 0 106
esc32a 130 93.8 129.2 109.2 104.6 83.1 433
esc32b 168 88.1 111.9 92.9 97.6 69.0 508
esc32c 642 7.8 15.6 14.0 15.0 4.0 552
esc32d 200 21 28.0 28.0 29.0 17.0 470
esc32e 2 0 0 0 0 0 220
esc32g 6 0 33.3 0 0 0 234
esc32h 438 18.3 25.1 19.6 25.1 13.2 570
esc64a 116 53.4 62.1 51.7 58.6 34.5 899
esc128 64 175 256.3 193.8 243.8 215.6 2045

Table 1: Comparison between upper bounds on the problems from the QAP library with (relatively)
sparse L.
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