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Abstract—We investigate the convergence rate analysis of the classical
inexact augmented Lagrangian method (iALM) for nonlinear-constrained
non-convex problems subject to a geometric condition involving the
nonlinear operator. We show that when coupled with a first-order
method, iALM finds first-order stationary points in Õ(1/ε3) calls to
the first-order oracle. In addition, when coupled with a second-order
method, iALM finds second-order stationary points in Õ(1/ε5) calls to
the second-order oracle. We provide numerical evidence on large-scale
signal processing and machine learning problems, modeled typically via
semidefinite relaxations, for which we verify the geometric condition.

We study the nonconvex optimization problemmin
x∈Rd

f(x) + g(x)

A(x) = b,
(1)

where f : Rd → R is possibly nonconvex and A : Rd → Rm is
a nonlinear operator and b ∈ Rm. For clarity of notation, we take
b = 0 in the sequel, the extension to any b is trivial. We assume that
g : Rd → R is a proximal-friendly (but possibly nonsmooth) convex
function.

A host of problems in computer science [8], [11], machine learning
[12], [18], and signal processing [16], [17] naturally fall under the
template of (1), including max-cut, clustering, generalized eigenvalue,
and community detection.

To address these applications, this paper builds up on the vast
literature on the classical inexact augmented Lagrangian framework
and proposes a simple, intuitive and easy-to-implement algorithm
for solving (1) with total iteration complexity results, under an
interpretable geometric condition detailed below.

To solve (1), the inexact Augmented Lagrangian Method (iALM)
is widely used [3], [4], [9], due to its cheap per-iteration cost and
also its empirical success in practice. Every (outer) iteration of
iALM calls a solver to inexactly solve an intermediate augmented
Lagrangian subproblem to near stationarity, and the user has freedom
in choosing this solver, which could be a first-order algorithm
(say, proximal gradient descent [15]) or a second-order algorithm,
such as BFGS [14].

We argue that, unlike its convex counterpart [13], [10], [20], the
convergence rate and the complexity of iALM for (1) are not well-
understood. Indeed, addressing this important theoretical gap is one
of the key contribution of the present work.

Summary of contributions:
. Our framework is future-proof in the sense that we obtain the
convergence rate of iALM for (1) with an arbitrary solver for
finding first- and second-order stationary points of each intermediate
subproblem.

. We investigate the use of different solvers for augmented La-

grangian subproblems and provide overall iteration complexity
bounds for finding first- and second-order stationary points of (1).
Our complexity bounds match the best theoretical complexity results
in optimization.

. We propose a novel geometric condition that simplifies the algo-
rithmic analysis of iALM. We verify the condition for a few key
problems.

I. EXAMPLE: BASIS PURSUIT

As one example, consider Basis Pursuit (BP), which find sparse
solutions of an under-determined system of linear equations, namely,{

minz ‖z‖1
Bz = b,

(2)

where B ∈ Rn×d and b ∈ Rn. BP has found many applications
in machine learning, statistics and signal processing [7], [5], [1].
A huge number of primal-dual convex optimization algorithms are
proposed to solve BP, including, but not limited to [19], [6]. There
also exists many line of works [2] to handle sparse regression problem
via regularization with `1 norm.

Here, we take a different approach and cast (2) as an instance of (1)
to find the equivalent problem

f(x) =‖x‖22, g(x) = 0

A(x) =Bx◦2 − b. (3)

We draw the entries of B independently from a zero-mean and
unit-variance Gaussian distribution. For a fixed sparsity level k, the
support of z∗ ∈ Rd and its nonzero amplitudes are also drawn from
the standard Gaussian distribution. Then the measurement vector is
created as b = Bz + ε, where ε is the noise vector with entries
drawn independently from the zero-mean Gaussian distribution with
variance σ2 = 10−6.

Figure 1 compiles our results for the proposed relaxation. The
true potential of our reformulation is in dealing with more structured
norms rather than `1, where computing the proximal operator is often
intractable.
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Figure 1. Convergence with different subsolvers for the basis pursuit problem.
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