
Noname manuscript No.
(will be inserted by the editor)

A relaxation of the augmented Lagrange method

Received: date / Accepted: date

Abstract We propose a splitting method for solving

Keywords Non-linear constraint · Non-convex · Smoothing · Primal-dual

Mathematics Subject Classification (2010) 47H05 · 49M29 · 49M27 · 90C25

1 Introduction

Various problems in engineering and computational sciences can be cast as non-linear optimization programs,
and the design of efficient numerical algorithms to provably solve such problems is therefore of fundamental
importance. cite? In this paper, we are particularly interested in solving the optimization program

minu h(u),

A(u) = b,

u ∈ C,
(1)

where h : Rd → R and A : Rd → Rm satisfy

‖∇h(u)−∇h(u′)‖ ≤ λh‖u− u′‖, ‖Dh(u)−Dh(u′)‖ ≤ λA‖u− u′‖, (2)

for every u, u′ ∈ Rd. Above, ∇h(u) ∈ Rd is the gradient of h and DA(u) ∈ Rm×d is the Jacobian of A.
Moreover, C ⊂ Rd is non-empty, closed, and convex. Variants of Program (1) naturally arise in a broad
range of applications in ?? Note: Please add some representative applications above alongside
some references. For the sake of brevity, we showcase here one instance of Program (1).

Example 1 (Burer-Monteiro factorization) Let Sd′×d′ be the space of d′×d′ symmetric matrices, equipped
with the standard inner product 〈x|y〉 = tr(x∗y). In particular, when x ∈ Sd′×d′ is positive semi-definite, we
write that x � 0. Consider the program 

minx h
′(x)

A′(x) = b′

x ∈ C ′

x � 0,

(3)

Address(es) of author(s) should be given

2

where h′ : Sd′×d′ → R, A′ : Sd′×d′ → Rm, b ∈ Rm, and C ′ ⊆ Rd′×d′ .
Variants of Program (3) are popular in matrix completion and sensing [17], with a broad range of

applications to problems in collaborative filtering, geophysics, and imaging, among others [8,7,21]. Two
common choices for C ′ in Program (3) are C ′ = {x : x ≥ 0} and C ′ = {x : tr(x) ≤ 1} [?].

Solving Program (3) with semi-definite programming is not scalable, becoming increasingly cumbersome
as the dimension d′ grows. To overcome this computational bottleneck, the factorized technique sets x = uu>

for u ∈ Rd′×r and a sufficiently large r. The resulting non-convex program is then solved with respect to the
much lower-dimensional variable u. If we also replace the constraint uu> ∈ C ′ with u ∈ C for a properly
chosen convex set, the new problem in u matches Program (1) with h(u) = h′(uu>) and A(u) = A′(uu>).
For our examples of C ′ above, we might choose C = {u : u ≥ 0} and C = {‖u‖2F ≤ 1}, respectively. Here,
‖ · ‖F stands for the Frobenius norm.

The augmented Lagrangian method [15] is a powerful approach to solve Program (1), see Section 4 for a
review of the related literature as well as other approaches to solve Program (1). Indeed, for positive β, it is
easy to verify that Program (1) is equivalent to

min
u∈C

max
y
Lβ(u, y), (4)

where

Lβ(u, y) := h(u) + 〈A(u)− b, y〉+
‖A(u)− b‖2

2β
, (5)

is the augmented Lagrangian corresponding to Program (1). The equivalent formulation in Program (4)
naturally suggests the following algorithm to solve Program (1):

uk+1 ∈ argmin
u∈C

Lβ(u, yk), (6)

yk+1 = yk +
A(uk+1)− b

β
. (7)

In fact, when the penalty parameter β is sufficiently small, the augmented Lagrangian has a local minimum
point near the true optimal point. However, we do not know exactly how small β is. Hence, the choice of β
plays a centreral role in practices. Note: Is the last claim really true? Programs (1) and (4) seem
to be equivalent. In our nonlinear framework, updating u in the augmented Lagrangian method requires
solving the non-convex Program (6) to global optimality, which is often intractable. Note: We should
discuss fixes to this issue, if any, and explain why they are not satisfactory. The key contribution
of this paper is to provably and efficiently address this challenge.

Contributions. In order to solve Program (1), this paper proposes to replace the (intractable) Program
(6) with the update

uk+1 = PC(uk − γk∇Lβk(uk, yk)), (8)

for carefully selected sequences {βk, γk}k. Here, PC is the orthogonal projection onto the convex set C which
is often easy to compute in various applications and consequently the update in (8) is inexpensive and fast.

Put differently, instead of fully solving Program (6), this paper proposes to apply one iteration of the
projected gradient algorithm for every update. We provide the convergence guarantees for this fast and
scalable new algorithm. Note: We should summarize the guarantees.

A relaxation of the augmented Lagrange method 3

2 Preliminaries

Note: I think the whole of this section should move down. The actual results are hidden deep
in the paper!

Notation. We use the notations 〈· | ·〉 and ‖ · ‖ for the standard inner product and the associated norm on
Rd, respectively. The adjoint of a linear operator is denoted the superscript >. Let C ⊂ Rd be nonempty,
closed, and convex. The indicator function of C is denoted by ιC , and the projection onto C is denoted by
PC . For u ∈ C, the tangent cone to C at u is

TC(u) =
{
v ∈ Rd : ∃t > 0 such that u+ tv ∈ C

}
. (9)

The corresponding normal cone NC(u) at u is the polar of the tangent cone, namely,

NC(u) = {v′ : 〈v, v′〉 ≤ 0, ∀v ∈ TC(u)} . (10)

The sub-differential of a convex function f at u is defined as

∂f(u) = {g : f(u′)− f(u) ≥ 〈g, u′ − u〉, ∀u′} . (11)

In particular, if f is differentiable at u, ∂f(u) is a singleton and denoted by ∇f(u).

Necessary Optimality Conditions. Necessary optimality conditions for Program (1) are well studied in
the literature [18, Corollary 6.15]. Indeed, u is a (first-order) stationary point of Program (1) if there exists
y for which {

−∇h(u)−DA(u)>y ∈ NC(u)

A(u) = b.
(12)

Here, DA(u) is the Jacobian of A at u. Recalling (5), we observe that (13) is equivalent to{
−∇uLβ(u, y) ∈ NC(u)

A(u) = b,
(13)

which is in turn the necessary optimality condition for Program (4).

Gradient Mapping. In nonconvex optimization, the relation between the gradient mapping and station-
arity is well-understood [19,13,3], which we review here for completeness.

Definition 1 Given u and γ > 0, define the gradient mapping

Gβ,γ(·; y) : u→ u− u+

γ
, (14)

where u+ = PC(u− γ∇Lβ(u, y)).

In particular, if we remove the constraints of Program (1), the gradient mapping reduces to Gβ,γ(u, y) =
∇h(u). The gradient mapping is closely related to Lβ . The following standard result is proved in Appendix A.

4

Lemma 1 For fixed y ∈ Rm, suppose that ∇uLβ(·, y) is λβ Lipschitz-continuous. For u ∈ C and γ ∈
(0, 1/λβ), it holds that

‖Gβ,γ(u; y)‖2 ≤ 2

γ
(Lβ(u; y)− Lβ(u+; y)), (15)

where

λβ ≤ λh +
√
mλA

(
‖y‖+

‖A(u)‖
β

)
+
‖DA(u)‖2F

β
, (16)

where DA(u) is the Jacobian of A at u.

In practice, the Lipschitz constant λβ is often hard to evaluate exactly and we might resort to the classic
line search technique, reviewed below and proved in Appendix B for completeness.

Lemma 2 Fix θ ∈ (0, 1) and γ0. For γ′ > 0, let u+γ′ = PC(u− γ′∇Lβ(u, y)) and define

γ := max

{
γ′ = γ0θ

i : Lβ(u+γ′ , y) ≤ Lβ(u, y) +
〈
u+γ′ − u,∇Lβ(u, y)

〉
+

1

2γ′
‖u+γ′ − u‖2

}
.

Then, (15) holds and moreover we have that

γ ≥ θ

λβ
. (17)

Optimality conditions in Section 2 can also be expressed in terms of the gradient mapping. Indeed, it is
straightforward to verify that u+ is a first-order stationary point of Program (1) if{

Gβ,γ(u, y) = 0

A(u+) = b.
(18)

Sufficient Optimality Conditions. Sufficient optimality conditions for Program (1) are also well under-
stood in the litterature [15,18,16,12]. Indeed, u is a local minimizer of Program (1) if there exists y for
which {

v> (∇uuh(u) +
∑m
i=1∇uuAi(u)) v ≥ 0, ∀v ∈ TC(u),

A(u) = b.
(19)

Note: Why does above look different from sufficient cnds for Lagrangian? Suppose to be
equivalent problems.

3 Algorithm & Convergence

3.1 Algorithm

We propose the following method for solving the problem (1) where, the main idea is that we do a projected
gradient descent step on u to obtain u+ and update the penalty parameter β+ in such a way that the
feasiblity 1

2β+γ ‖Lu
+ − b‖2 reduce faster than the gradient mapping up to some noise level ω:

1

2β+γ
‖Lu+ − b‖2 ≤ 1

8
‖Gβ,γ(u, y)‖2 +

ω

γ
(20)

A relaxation of the augmented Lagrange method 5

Then update the corresponding the multiplier y as in the classical ADMM:

y+ = y +
1

σ
(LU+ − b). (21)

The formal algorithm is presented as follows.

Input: β0 > 0, c > 0, α ∈ [0, 1[, u0 ∈ C, y0 = 0, ε1 ∈]0, 1[. Given βk, choose γk ≤ 1−ε1
Lh+Lβk

. Iterate

For k=0,1,. . .
1. Projected gradient: uk+1 = PC(uk − γk∇Fβk (uk, yk)).
2. Line search step

s = 0, dk,0 = 2, βk+1,0 = 1
2
‖Luk+1 − b‖2

(
γk
8
‖Gβk,γk (uk, yk)‖2 +

dk,s

(1+k)1+ε1

)−1

.

While βk+1,s ≥ c/(k + 1)α do

dk,s+1 = 2 ∗ dk,s (22)

βk+1,s+1 =
1

2
‖Luk+1 − b‖2

(
γk

8
‖Gβk,γk (uk, yk)‖2 +

dk,s+1

(1 + k)1+ε1

)−1

(23)

s← s+ 1. (24)

Endwhile
3. Update βk+1 = βk+1,s.

4. Chose σk+1 ≥ 2βk and update yk+1 = yk + 1
σk+1

(Luk+1 − b).

Remark 1 The updating rule of (βk)k∈N in (22) plays a role in our analysis. Intuitively, if uk+1 is solution then
Luk+1 = b and (22) is trivially satisfied for any βk+1 ≥ 0. Hence βk+1 enforces uk+1 close to

{
u | Lu = b

}
Remark 2 When σk ≡ ∞, we get yk ≡ 0 and hence the step 2 disappears. If we chose σk = c(k+1)α1‖Luk−b‖
where c, α1 is chosen such that σk > 2βk−1, then

‖yk+1‖ ≤ ‖yk‖+
‖Luk+1 − b‖

σk+1
= ‖yk‖+

1

c(k + 2)α
. (25)

Since
∑
k∈N

1
c(k+2)α < +∞, (‖yk‖)k∈N converges and hence bounded. Therefore,

b0 = inf
k∈N
Lβk(uk+1, yk) ≥ inf

k
h(uk), (26)

which implies that b0 > −∞ whenever (uk)k∈N or dom(f) is bounded.

3.2 Convergence

In view of Lemma ??, we need to estimate gradient mapping ‖Gβk,γk(uk, yk)‖ as well as feasibility ‖Lun+1−
b‖2.

Theorem 1 Suppose that b0 = infk∈N Lβk(uk+1, yk) > −∞ and that z0 =
∑∞
k=1

dk,sk
(1+k)1+ε1

< +∞, where sk
be the smallest index such that βk,sk < c/(k + 1)α. Then the following hold.

∞∑
k=1

γk‖Gβk,γk(uk, yk)‖2 ≤ 4(Lβ0
(u1, y0) + z0 − b0 +

γ0
8
‖Gβ0,γ0(u0)‖2), (27)

6

and
∞∑
k=1

1

βk+1
‖Luk+1 − b‖2 ≤ (Lβ0

(u1, y0) + 3z0 − b0 +
γ0
8
‖Gβ0,γ0(u0)‖2). (28)

4 Related Work

To the best of our knowledge, the proposed method is new and different from existing methods in the
literature.

As mentioned in Introduction, the connection to augmented Lagrange method is already mentioned. Our
method is significantly different from the augmented Lagrange method, we perform only step of the projected
gradient step on primal variable u instead of minimizing the augmented Lagrange fucntion. Furthermore, we
update the penalty parameter β adaptively to make sure that the feasibility reduces faster than the gradient
mapping.

In the case when h = 0, a modification of Chambolle-Pock’s method is investigated in [22] and precon-
ditioned ADMM [2] where the convergence of iterate is proved under strong assumptions not full-filling in
our setting here.

ADMM is the classic method proposed for solving the problem 1 for the case where L is a linear operator
and h is zero [10]. This method is an application of the Douglas-Rachford method to the dual problem [9].
One of the main drawback of the ADMM is the appearance of the term Lu in the update rule of uk+1. To
overcome this issue, some strategies were suggested. The first strategies is proposed in [20], refined in [1],
known as alternating direction proximal method of multipliers. The second strategies is to use linearized
technique [14]. We show here that our proposed method is closed related to updating rule as the linearized
alternating direction method [14]. Assume that h ≡ 0 and L is a linear operator. Then the proposed method
can be rewritten as 

uk+1 = arg minu∈C
1

2γk
‖u− uk + γkL

∗
(
λk + 1

βk

(
Luk − b

))
‖2

βk+1 = 1
2‖Luk+1 − b‖2

(
γk
8 ‖Gβk,γk(uk, yk)‖2 + dk

(k+1)α

)−1
Chose σk+1 ≥ 2βk and λk+1 = λk + 1

σk+1
(Luk+1 − b),

which is a variant version of Linearized ADMM [14].

Very recently, [4] proposes a framework with for solving the problem 1 with C = Rd. In particular, a
special case AlBUM3 (Proximal Linearized Alternating Minimization) in this work is closely related to us
where their conditions are checkable only when L is linear. Moreover, our updating of βk in [4] depending
on the smallest eigenvalue L∗L. For nonlinear L, the application of their method remains a challenge.

The deflected subgradient method is investigated in [6] can be use to solve a special case of the Problem
1 for some a compact subset C in X . The basis step of the deflected subgradient method to solve: given β, v,

u∗ ∈ arg min
u∈C

h(u) + βσ(Lu− b)− 〈Kv | Lu− b〉 (29)

where σ is a continuous penalty function such as ‖ · ‖, and K is bounded linear operator. In general, there is
no closed -form expression for u∗ since it does not split f , h, L invididually. Hence, it is hard to implement
deflected subgradient method. This is also a common drawback of the classic penalty method and its related
works [11,5].

A relaxation of the augmented Lagrange method 7

5 Numerical experiments

5.1 Hanging chain

References

1. S. Banert, R. I. Bot, and E. R. Csetnek. Fixing and extending some recent results on the admm algorithm. arXiv preprint
arXiv:1612.05057, 2016.

2. M. Benning, F. Knoll, C.-B. Schönlieb, and T. Valkonen. Preconditioned admm with nonlinear operator constraint. In
L. Bociu, J.-A. Désidéri, and A. Habbal, editors, System Modeling and Optimization, pages 117–126, Cham, 2016. Springer
International Publishing.

3. J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization or nonconvex and nonsmooth problems.
Mathematical Programming, 146(1-2):459–494, 2014.

4. J. Bolte, S. Sabach, and M. Teboulle. Nonconvex lagrangian-based optimization: monitoring schemes and global convergence.
Mathematics of Operations Research, 2018.

5. R. S. Burachik, A. N. Iusem, and J. G. Melo. A primal dual modified subgradient algorithm with sharp lagrangian. Journal
of Global Optimization, 46(3):347–361, 2010.

6. R. S. Burachik and C. Y. Kaya. A deflected subgradient method using a general augmented lagrangian duality with
implications on penalty methods. In Variational Analysis and Generalized Differentiation in Optimization and Control,
pages 109–132. Springer, 2010.

7. S. Burer and R. D. Monteiro. A nonlinear programming algorithm for solving semidefinite programs via low-rank factor-
ization. Mathematical Programming, 95(2):329–357, Feb 2003.

8. S. Burer and R. D. Monteiro. Local minima and convergence in low-rank semidefinite programming. Mathematical Pro-
gramming, 103(3):427–444, Jul 2005.

9. D. Gabay. Applications of the method of multipliers to variational inequalities. in: M. Fortin and R. Glowinski (eds.),
Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, North-Holland, Amsterdam,
1983.

10. D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approxi-
mation. Computers and Mathematics with Applications, 2(1):17–40, 1976.

11. R. N. Gasimov. Augmented lagrangian duality and nondifferentiable optimization methods in nonconvex programming.
Journal of Global Optimization, 24(2):187–203, 2002.

12. H. Gfrerer and B. S. Mordukhovich. Complete characterizations of tilt stability in nonlinear programming under weakest
qualification conditions. SIAM Journal on Optimization, 25(4):2081–2119, 2015.

13. W. Hare and C. Sagastizábal. Computing proximal points of nonconvex functions. Mathematical Programming, 116(1):221–
258, 2009.

14. Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive penalty for low-rank representation. In
Advances in neural information processing systems, pages 612–620, 2011.

15. D. G. Luenberger, Y. Ye, et al. Linear and nonlinear programming, volume 2. 2007.
16. B. S. Mordukhovich. Variational analysis and generalized differentiation I: Basic theory, volume 330. Springer Science &

Business Media, 2006.
17. D. Park, A. Kyrillidis, S. Bhojanapalli, C. Caramanis, and S. Sanghavi. Provable burer-monteiro factorization for a class

of norm-constrained matrix problems. arXiv preprint arXiv:1606.01316, 2016.
18. R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer Science & Business Media, 2009.
19. H. X. S. Ghadimi, G. Lan. Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization.

Math. Program., Ser. A, 155:267–305, 2016.
20. R. Shefi and M. Teboulle. Rate of convergence analysis of decomposition methods based on the proximal method of

multipliers for convex minimization. SIAM Journal on Optimization, 24(1):269–297, 2014.
21. S. Tu and J. Wang. Practical first order methods for large scale semidefinite programming. 2014.
22. T. Valkonen. A primal-dual hybrid gradient method for nonlinear operators with applications to mri. Inverse Problems,

30(5):055012, 2014.

A Proof of Lemma 1

Note that (15) follows immediately from an application of [3, Lemma 3.2, Remark 3.2(i)]. It only remains to compute the
smoothness parameter of Lβ(·, y), namely, λβ . To that end, note that

Lβ(u, y) = h(u) +

m∑
i=1

yi(Ai(u)− bi) +
1

2β

m∑
i=1

(Ai(u)− bi)2, (30)

8

which implies that

∇uLβ(u, y) = ∇h(u) +

m∑
i=1

yi∇Ai(u) +
1

β

m∑
i=1

(Ai(u)− bi)∇Ai(u)

= ∇h(u) +DA(u)>y +
DA(u)>(A(u)− b)

β
, (31)

where DA(u) is the Jacobian of A at u. Likewise,

∇2
uLβ(u, y) = ∇2h(u) +

m∑
i=1

(
yi +

Ai(u)

β

)
∇2Ai(u) +

1

β

m∑
i=1

∇Ai(u)∇Ai(u)>. (32)

It follows that

‖∇2
uLβ(u, y)‖ ≤ ‖∇2h(u)‖+ max

i
‖∇2Ai(u)‖

(
‖y‖1 +

‖A(u)− b‖1
β

)
+

1

β

m∑
i=1

‖∇Ai(u)‖2

≤ λh +
√
mλA

(
‖y‖+

‖A(u)− b‖
β

)
+
‖DA(u)‖2F

β
(h ∈ L(λh), Ai ∈ L(λA))

= λh +
√
mλA

(
‖y‖+

‖A(u)− b‖
β

)
+
‖DA(u)‖2F

β
, (33)

and, consequently,

λβ = sup
u
‖∇2

uLβ(u, y)‖

≤ λh +
√
mλA

(
‖y‖+

‖A(u)− b‖
β

)
+
‖DA(u)‖2F

β
, (34)

which completes the proof of Lemma 1.

B Proof of Lemma 2

Since u, u+γ ∈ C, it holds that

u+γ − u ∈ −TC(u+γ). (35)

Also, recalling u+γ in Definition 1, we have that

u+γ − u+ γ∇Lβ(u, y) ∈ −NC(u+γ). (36)

Lastly, γ by definition in (2) satisfies

Lβ(u+γ , y)

≤ Lβ(u, y) +
〈
u+γ − u,∇Lβ(u, y)

〉
+

1

2γ
‖u+γ − u‖2

= Lβ(u, y) +
1

γ

〈
u+γ − u, u+γ − u+ γ∇Lβ(u, y)

〉
−

1

2γ
‖u+γ − u‖2

≤ Lβ(u, y)−
1

2γ
‖u+γ − u‖2 (see (35,36))

= Lβ(u, y)−
γ

2
‖Gβ,γ(u, y)‖2, (see Definition 1) (37)

which completes the proof of Lemma 2.

A relaxation of the augmented Lagrange method 9

C Draft of convergence proof

For convenience, let us recall the updates of the algorithm in iteration k, namely,

uk+1 = PC(uk − γk∇Lβk (uk, yk))

= PC

(
uk − γk∇h(uk)− γkDA(uk)>

(
yk +

A(uk)− b
βk

))
, (see (5)) (38)

yk+1 = yk +
A(uk+1)− b

σk+1
, (39)

Gk = Gβk,γk (uk, yk) =
uk − uk+1

γk
. (see (14)) (40)

For integers k0 ≤ k1, consider the interval

K = [k0 : k1] = {k0, · · · , k1}. (41)

Since γk is determined by the line search subroutine in Lemma 2, we may now apply Lemma 1 for every iteration in this interval
to find that

γk‖Gk‖2

2
≤ Lβk (uk, yk)− Lβk (uk+1, yk) (see Lemma 1)

= h(uk)− h(uk+1) + 〈A(uk)−A(uk+1), yk〉+
‖A(uk)− b‖2 − ‖A(uk+1)− b‖2

2βk
, (see (5)) (42)

for every k ∈ K. On the other hand,

yk = yk0 +

k∑
i=k0+1

A(ui)− b
σi

, (see (39)) (43)

which, after substituting in (42), yields that

γk‖Gk‖2

2
≤ h(uk)− h(uk+1) +

〈
A(uk)−A(uk+1), yk0 +

k∑
i=k0+1

A(ui)− b
σi

〉
+
‖A(uk)− b‖2 − ‖A(uk+1)− b‖2

2βk
. (44)

Additionally, let us assume that

βk =
β
√
k
, σk = βk, ∀k ∈ K, (45)

with β > 0. For the record, the above assumptions imply that

1

βk
−

1

βk−1
≤

1

β
√
k
,

1

σk
≤

1

β
√
k
, ∀k ∈ K, (46)

10

for sufficiently large k0. By summing up the key inequality in (44) over k from k0 to k1 and using (45), we find that

k1∑
k=k0

γk‖Gk‖2

2

≤ h(uk0)− h(uk1+1) + 〈A(uk0)−A(uk1+1), yk0 〉+

k1∑
k=k0

k∑
i=k0+1

〈
A(uk)−A(uk+1),

A(ui)− b
σi

〉

+

k1∑
k=k0

‖A(uk)− b‖2

2βk
−

k1∑
k=k0

‖A(uk+1)− b‖2

2βk
(see (44))

= h(uk0)− h(uk1+1) + 〈A(uk0)−A(uk1+1), yk0 〉+

k1∑
k=k0

k∑
i=k0+1

〈
A(uk)−A(uk+1),

A(ui)− b
σi

〉

+

k1∑
k=k0

‖A(uk)− b‖2

2βk
−

k1+1∑
k=k0+1

‖A(uk)− b‖2

2βk−1

≤ h(uk0)− h(uk1+1) + 〈A(uk0)−A(uk1+1), yk0 〉+
‖A(uk0)− b‖2

2βk0
+

k1∑
i=k0+1

k1∑
k=i

〈
A(uk)−A(uk+1),

A(ui)− b
σi

〉

+

k1∑
k=k0+1

(
1

2βk
−

1

2βk−1

)
‖A(uk)− b‖2

≤ µ+

k1∑
i=k0+1

〈
A(ui)−A(uk1+1),

A(ui)− b
σi

〉
+

k1∑
k=k0+1

(
1

2βk
−

1

2βk−1

)
‖A(uk)− b‖2 (see (48))

= µ+

k1∑
k=k0+1

(
1

σk
+

1

2βk
−

1

2βk−1

)
‖A(uk)− b‖2 −

k1∑
k=k0+1

〈
A(uk1+1)− b,

A(uk)− b
σk

〉

≤ µ+

k1∑
k=k0+1

(
1

σk
+

1

2βk
−

1

2βk−1

)
‖A(uk)− b‖2 +

k1∑
k=k0+1

1

σk
‖A(uk1+1)− b‖‖A(uk)− b‖

≤ µ+

k1∑
k=k0+1

(
1

β
√
k

+
1

2βk
−

1

2βk−1

)
‖A(uk)− b‖2 +

k1∑
k=k0+1

1

β
√
k
‖A(uk1+1)− b‖‖A(uk)− b‖ (see (46))

≤ µ+

k1∑
k=k0+1

3

2β
√
k
‖A(uk)− b‖2 +

k1∑
k=k0+1

1

β
√
k
‖A(uk1+1)− b‖‖A(uk)− b‖ (see (46))

≤ µ+

k1∑
k=k0+1

(
3

2β
√
k

+
1

2β

)
‖A(uk)− b‖2 +

k1∑
k=k0+1

1

2βk
‖A(uk1+1)− b‖2

(
2ab ≤ ca2 + c−1b2

)

≤ µ+

k1∑
k=k0+1

2

β
‖A(uk)− b‖2 +

k1∑
k=k0+1

1

2βk
‖A(uk1+1)− b‖2

≤ µ+

k1∑
k=k0+1

2

β
‖A(uk)− b‖2 +

log k1

β
‖A(uk1+1)− b‖2

 k1∑
k=1

1

k
≤ 2

∫ k1

1

dκ

κ
= 2 log k1


≤ µ+

2

β

k1+1∑
k=k0+1

log k‖A(uk)− b‖2, (47)

where we assumed that

µ := sup
k
h(uk0)− h(uk) + 〈A(uk0)−A(uk), yk0 〉+

‖A(uk0)− b‖2

2βk0
<∞. (48)

A relaxation of the augmented Lagrange method 11

Note that (47) bounds the gradient mapping with the feasibility gap. We next find a converse, thus bounding the feasibility gap
with the gradient mapping. To that end, let TC(u) and PTC(u) be the tangent cone of C at u ∈ C and orthogonal projection
onto this subspace, respectively. Likewise, let NC(u) and PNC(u) be the normal cone of C at u and the corresponding orthogonal
projection. The update rule for uk in (38) immediately implies that

Gk −∇h(uk)−DA(uk)>yk −
1

βk
DA(uk)>(A(uk)− b) ∈ NC(uk+1). (49)

By definition in (40), we have that Gk ∈ TC(uk+1) which, together with (49), imply that

Gk = PTC(uk+1)

(
−∇h(uk)−DA(uk)>yk −

1

βk
DA(uk)>(A(uk)− b)

)
= PTC(uk+1)

(−∇h(uk)) + PTC(uk+1)
(−DA(uk)>yk) +

1

βk
PTC(uk+1)

(−DA(uk)>(A(uk)− b))

= PTC(uk+1)
(−∇h(uk)) + PTC(uk+1)

(−DA(uk)>yk−1) +

(
1

βk
+

1

σk

)
PTC(uk+1)

(−DA(uk)>(A(uk)− b)), (50)

where the last line above uses (39). After rearranging and applying the triangle inequality above, we reach

1

βk
‖PTC(uk+1)

(DA(uk)>(A(uk)− b))‖ ≤
(

1

σk
+

1

βk

)
‖PTC(uk+1)

(DA(uk)>(A(uk)− b))‖

≤ ‖∇h(uk)‖+ ‖DA(uk)‖ · ‖yk−1‖+ ‖Gk‖
≤ λ′h + ηmax‖yk−1‖+ ‖Gk‖, (51)

where we set

λ′h := max
u∈C
‖∇h(u)‖, ηmax = max

u∈C
‖DA(u)‖. (52)

We next translate (51) into an upper bound on ‖A(uk)− b‖.

Lemma 3 For an integer k0, let

SK ⊇
⋃
k∈K

TC(uk), (53)

and, with some abuse of notation, let SK also denote an orthonormal basis for this subspace. For ρ > 0, suppose that there
exists ηmin such that

0 < ηmin :=


minu

∥∥S>KPTC(u)(DA(u)>v)
∥∥

‖v‖ = 1

‖A(u)− b‖ ≤ ρ
u ∈ C.

(54)

Suppose also that

sup
k∈K

‖A(uk)− b‖ ≤ ρ, (55)

diam(C) ≤
ηmin

2λA
. (56)

Then it holds that

‖A(uk)− b‖ ≤
2βk

ηmin

(
λ′h + ηmax‖yk−1‖+ ‖Gk‖

)
, ∀k ∈ K. (57)

12

Roughly speaking, (57) states that the feasibility gap is itself bounded by the gradient map. In order to apply Lemma 3,
let us assume that (55) holds. Lemma 3 is then in force and we may now substitute (57) back into (47) to find that

k1∑
k=k0

γk‖Gk‖2 ≤
4

β

k1+1∑
k=k0+1

log k‖A(uk)− b‖2 + 2µ (see (47))

≤
16

βη2min

k1+1∑
k=k0+1

β2
k log k

(
λ′h + ηmax‖yk−1‖+ ‖Gk‖

)2
+ 2µ (see (57))

≤
16β

η2min

k1+1∑
k=k0+1

log k

k

(
λ′h + ηmax‖yk−1‖+ ‖Gk‖

)2
+ 2µ (see (45))

≤
48β

η2min

k1+1∑
k=k0+1

log k

k

(
λ′2h + η2max‖yk−1‖2 + ‖Gk‖2

)
+ 2µ.

(
(a+ b+ c)2 ≤ 3(a2 + b2 + c2)

)
(58)

To simplify the above expression, let us assume that

48β log k

η2mink
≤
γk

2
, ∀k ∈ K. (59)

Let |K| = k1 − k0 + 1 be the size of the interval K. After rearranging (58) and applying (59), we arrive at

|K|
2
· min
k∈K

γk‖Gk‖2

≤
k1∑
k=k0

γk

2
‖Gk‖2

≤
k1∑
k=k0

(
γk −

48β log k

η2mink

)
‖Gk‖2 (see (59))

≤
48βλ′2h
η2min

k1+1∑
k=k0+1

log k

k
+

48βη2max

η2min

k1+1∑
k=k0+1

‖yk−1‖2 log k

k
+

48β log(k1 + 1)‖Gk1+1‖2

η2min(k1 + 1)
+ 2µ (see (58))

=:
48βλ′2h
η2min

k1+1∑
k=k0+1

log k

k
+

48βη2max

η2min

k1+1∑
k=k0+1

‖yk−1‖2 log k

k
+ 2µ′

≤
48βλ′2h log(k1 + 1)

η2min

k1+1∑
k=k0+1

1

k
+

48βη2max log(k1 + 1)

η2min

k1+1∑
k=k0+1

‖yk−1‖2

k
+ 2µ′

≤
96βλ′2h log2(k1 + 1)

η2min

+
48βη2max log(k1 + 1)

η2min

k1∑
k=k0

‖yk‖2

k + 1
+ 2µ′

≤
96β log2(k1 + 1)

η2min

λ′2h + η2max

k1∑
k=k0

‖yk‖2

k + 1

+ 2µ′, (60)

or, equivalently,

min
k∈K

γk‖Gk‖2 ≤
192β log2(k1 + 1)

η2min|K|
(
λ′2h + η2max|K|BK

)
+

4µ′

|K|
, (61)

where

µ′ :=
24β log(k1 + 1)‖Gk1+1‖2

η2min(k1 + 1)
+ µ, (62)

A relaxation of the augmented Lagrange method 13

BK :=
1

|K|

k1∑
k=k0

‖yk‖2

k + 1
, (63)

and we will later estimate both µ′, BK . In turn, the bound above on the gradient mapping controls the feasibility gap, namely,

|K| min
k−1∈K

log k‖A(uk)− b‖2

≤
k1+1∑
k=k0+1

log k‖A(uk)− b‖2

≤
12β2λ′2h
η2min

k1+1∑
k=k0+1

log k

k
+

12β2η2max

η2min

k1+1∑
k=k0+1

‖yk−1‖2 log k

k
+

k1+1∑
k=k0+1

12β2 log k

η2mink
‖Gk‖2 (see (58))

≤
24β2λ′2h log2(k1 + 1)

η2min

+
12β2η2max log(k1 + 1)

η2min

· |K|BK +
β

8

k1∑
k=k0

γk‖Gk‖2 +
12β2 log(k1 + 1)‖Gk1+1‖2

η2min(k1 + 1)
(see (59,63))

≤
24β2 log2(k1 + 1)

η2min

(
λ′2h + η2max|K|BK

)
+

24β2 log2(k1 + 1)

η2min

(
λ′2h + η2max|K|BK

)
+
βµ′

2
+

12β2 log(k1 + 1)‖Gk1+1‖2

η2min(k1 + 1)
(see (60))

≤
24β2 log2(k1 + 1)

η2min

(
λ′2h + η2max|K|BK

)
+

24β2 log2(k1 + 1)

η2min

(
λ′2h + η2max|K|BK

)
+ βµ′ (see (62))

=
48β2 log2(k1 + 1)

η2min

(
λ′2h + η2max|K|BK

)
+ βµ′, (64)

which in turn implies that

min
k−1∈K

‖A(uk)− b‖2 ≤
48β2 log2(k1 + 1)

η2min|K|
(
λ′2h + η2max|K|BK

)
+
βµ′

|K|
, (65)

if k0 ≥ 2. Let us now revisit and simplify the condition imposed in (55). To that end, we first derive a weaker but uniform
bound on the feasibility gap. For every k − 1 ∈ K, it holds that

‖A(uk)− b‖2 ≤
k1+1∑
i=k0+1

log i‖A(ui)− b‖2 (k0 ≥ 2)

≤
48β2 log2(k1 + 1)

η2min

(
λ′2h + η2max|K|BK

)
+ βµ′. (see (65)) (66)

Therefore, we may replace (55) with the assumption that

‖A(uk0)− b‖ ≤ ρ,
48β2 log2(k1 + 1)

η2min

(
λ′2h + η2max|K|BK

)
+ βµ′ ≤ ρ2, (67)

which ensures that

‖A(uk)− b‖ ≤ ρ, ∀k ∈ [k0 : k1 + 1]. (68)

In order to interpret (60,65,67), we next estimate BK in (63). To that end, let us first control the growth of the dual sequence
{yk}k. Recalling (39) and for every k ∈ [k0 : k1 + 1], we write that

‖yk‖ ≤ ‖yk0‖+

k∑
i=k0+1

‖A(ui)− b‖
σk

(see (39))

≤ ‖yk0‖+

k∑
i=k0+1

ρ

βk
(see (45,68))

≤ ‖yk0‖+
2ρ log k

β
. (69)

14

With the growth of the dual sequence uncovered, we evaluate BK as

BK =
1

|K|

k1∑
k=k0

‖yk‖2

k + 1
(see (63))

≤
1

|K|

k1∑
k=k0

1

k + 1

(
‖yk0‖+

2ρ log k

β

)2

(see (69))

≤
1

|K|

k1∑
k=k0

2‖yk0‖2

k + 1
+

8ρ2 log2 k

β2(k + 1)
((a+ b)2 ≤ 2a2 + 2b2)

≤
4‖yk0‖2 log(k1 + 1)

|K|
+

16ρ2 log3(k1 + 1)

|K|

≤
16 log3(k1 + 1)

|K|
(
‖yk0‖

2 + ρ2
)
. (70)

In order to interpret (60,65,67), it still remains to estimate µ′ in (62). To that end, we first derive a lower bound on the step sizes
{γk}k. To invoke (17), we in turn need to gauge how smooth the augmented Lagrangian Lβk (·, yk) is. For every k ∈ [k0 : k1 +1],
note that

λβk ≤ λh +
√
mλA

(
‖yk‖+

‖A(uk)− b‖
βk

)
+
‖DA(uk)‖2F

βk
(see (16))

≤ λh +
√
mλA

(
‖yk0‖+

2ρ log(k1 + 1)

βk
+

ρ

βk

)
+
mη2max

βk
(see (52,68,69))

= λh +
√
mλA‖yk0‖+

1

βk
(2
√
mλAρ log(k1 + 1) +

√
mλAρ+mη2max)

≤
2

βk
(2
√
mλAρ log(k1 + 1) +

√
mλAρ+mη2max), (71)

where the last line holds if k0 is sufficiently large. We are now in position to invoke (17) by writing that

γk ≥
θ

λβk
(see (17))

≥
θβk

4
√
mλAρ log(k1 + 1) + 2

√
mλAρ+ 2mη2max

(see (71))

=
θβ

(4
√
mλAρ log(k1 + 1) + 2

√
mλAρ+ 2mη2max)

√
k
, (see (45)) (72)

for every k ∈ [k0 : k1 + 1]. In particular, the lower bound on γk1+1 above allows us to estimate µ′ by writing that

µ′ =
24β log(k1 + 1)‖Gk1+1‖2

η2min(k1 + 1)
+ µ (see (62))

=
24β log(k1 + 1)‖uk1+2 − uk1+1‖2

η2min(k1 + 1)γ2k1+1

+ µ (see (40))

≤
24β log(k1 + 1)diam(C)2

η2min(k1 + 1)γ2k1+1

+ µ ({uk} ⊂ C)

≤
24β log(k1 + 1)diam(C)2(4

√
mλAρ log(k1 + 1) + 2

√
mλAρ+ 2mη2max)2

η2minθ
2β2

+ 2µ (see (72))

=: µ′′. (73)

Having estimated BK and µ′, we can rewrite the bound on the feasibility gap as

min
k−1∈[K]

‖A(uk)− b‖2 ≤
48β2 log2(k1 + 1)

η2min|K|
(
λ′2h + η2max|K|BK

)
+
βµ′

|K|
(see (65))

≤
48β2 log2(k1 + 1)

η2min|K|
(
λ′2h + 16η2max(‖yk0‖

2 + ρ2) log3(k1 + 1)
)

+
βµ′′

|K|
(see (70,73)) (74)

A relaxation of the augmented Lagrange method 15

Moreover, we can simplify the assumption in (67). To be specific, thanks to (70,73), we can replace (67) with the assumption

‖A(uk0)− b‖ ≤ ρ,
48β2 log2(k1 + 1)

η2min

(
λ′2h + 16η2max(‖yk0‖

2 + ρ2) log3(k1 + 1)
)

+ βµ′′ ≤ ρ2. (75)

The lower bound on the step sizes in (72) has two other consequences. First, we find that (59) automatically holds if k0 is
sufficiently large. Second, it allows us to improve (61) by writing that

min
k∈K

‖Gk‖2

≤
mink∈K γk‖Gk‖2

mink∈K γk

≤
1

mink∈K γk

(
192β log2(k1 + 1)

η2min|K|
(
λ′2h + η2max|K|BK

)
+

4µ′

|K|

)
(see (61))

≤
1

mink∈K γk

(
192β log2(k1 + 1)

η2min|K|
(
λ′2h + 16η2max(‖yk0‖

2 + ρ2) log3(k1 + 1)
)

+
4µ′′

|K|

)
(see (70,73))

≤
(4
√
mλAρ log(k1 + 1) + 2

√
mλAρ+ 2mη2max)

√
k

θβ

(
192β log2(k1 + 1)

η2min|K|
(
λ′2h + 16η2max(‖yk0‖

2 + ρ2) log3(k1 + 1)
)

+
4µ′′

|K|

)
(see (72))

≤
4
√
mλAρ log(k1 + 1) + 2

√
mλAρ+ 2mη2max

cθβ
√
k1

(
192β log2(k1 + 1)

η2min

(
λ′2h + 16η2max(‖yk0‖

2 + ρ2) log3(k1 + 1)
)

+ 4µ′′

)
, (76)

where the last line holds if there exists c > 0 for which k1 − k0 + 1 ≥ ck1.

Theorem 2 Let γk be the output of the line search subroutine in our algorithm in iteration k. For integers k0 ≤ k1, consider
the interval K = [k0 : k1] and suppose that

βk =
β
√
k
, σk = βk, ∀k ∈ K. (77)

We impose the following geometric requirements on the constraints. Let PTC(u) and PNC(u) denote the orthogonal projection

onto the tangent and normal cones at u ∈ C, respectively. Consider a subspace SK ⊆ Rd such that

SK ⊇
⋃
k∈K

TC(uk), (78)

and, with some abuse of notation, let SK also denote an orthonormal basis for this subspace. For ηmin, we assume that the
nonconvex Slater’s condition holds, namely, that there exists ρ > 0 such that

0 < ηmin :=


minu

∥∥∥S>k0PTC(u)(DA(u)>v)
∥∥∥

‖v‖ = 1

‖A(u)− b‖ ≤ ρ
u ∈ C.

(79)

Suppose that

‖A(uk0)− b‖ ≤ ρ, diag(C) ≤
2ηmin

λA
, ρ ≥ ρlow(C,A, β) log

5
2 k1, (80)

where ρlow(C,A, β) depends only on C,A, β and is specified in the proof, see (75). Then it holds that

min
k∈K

‖Gβi,γi (ui, yi)‖
2 =

O(log5 k1)
√
k1

, ∀k ∈ K, (81)

min
k∈K

‖A(uk)− b‖ =
O(log5 k1)
√
k1

, ∀k ∈ K, (82)

provided that k0 = Ω(k1) is sufficiently large and

inf
k
h(uk) + 〈A(uk)− b, yk0 〉 > −∞. (83)

16

Example: Max-cut Consider the factorized max-cut program, namely,{
min〈UU>, H〉
diag(UU>) = 1,

(84)

where U ∈ Rd′×r. For every i, let ui ∈ Rr denote the ith row of U . Let us form u ∈ Rd with d = d′r by vectorizing U , namely,

u = [u>1 · · ·u>d′]
>. (85)

We can therefore cast the above program as Program (1) with

h(u) =
∑
i,j

Hi,j〈ui, uj〉, (86)

A : u→ [‖u1‖2 · · · ‖ud′‖2]>. (87)

It is easy to verify that

DA(u) =


u>1 · · · 0
...
0 · · · u>

d′

 ∈ Rd
′×d. (88)

In particular, if we take Sk0 = Rd and ρ < 1, we have PTC(u) = Id and thus

ηmin =

{
minu ηmin (DA(u))

‖A(u)− 1‖ ≤ ρ

=

{
minu mini ‖ui‖2

|‖ui‖2 − 1| ≤ ρ ∀i

≥ 1− ρ > 0. (89)

Above, ηmin(DA(u)) returns the smallest singular value of DA(u). Consequently, the nonconvex Slater’s condition holds for
the max-cut problem.

Example: Clustering Consider the factorized clustering problem, namely,
min〈UU>, H〉
UU>1 = 1

‖U‖F ≤
√
k

U ≥ 0,

(90)

where U ∈ Rd′×r and k is the number of clusters. We form u ∈ Rd as before. Note that the above program can be cast as
Program (1) with the same h as before and

A : u→
[
u>1
∑
j uj · · ·u>d′

∑
j uj

]> ∈ Rd
′
, (91)

and also C =
√
kB2+, where B2+ ⊂ Rd′ is the intersection of the unit `2-ball with the positive orthant. Note that

DA(u) =


w1,1u>1 · · · w1,d′u

>
1

...
wd′,1u

>
d′ · · · wd′,d′u

>
d′

 , (92)

where wi.i = 2 and wi,j = 1 for i 6= j. Let us start with the case where u ∈ ∂C belongs to the boundary of C, namely, ‖u‖ =
√
k.

We also assume that u > 0. Under these assumptions, note that

TC(u) = {z ∈ Rd
′

: 〈u, z〉 = 0}, (93)

A relaxation of the augmented Lagrange method 17

and, consequently,

PTC(u) = Id −
uu>

‖u‖2
= Id −

uu>

k
. (94)

For simplicity, let us assume that ρ = 0, namely, u is a feasible point of Program (1). Then we find that

ηmin(PTC(u)DA(u)>) = ηmin((I −
uu>

k
)DA(u)>)

≥ ηmin(DA(u))−
1

k
‖uu>DA(u)>‖ (Weyl’s inequality)

= ηmin(DA(u))−
1
√
k
‖DA(u)u‖

(
‖u‖ =

1
√
k

)
. (95)

We evaluate each term in the last line above separately. By its definition in (92), first note that

ηmin(DA(u)) ≥ ηmin


 u1 · · · ud′..

.
u1 · · · ud′


−max

i
‖ui‖ (Weyl’s inequality)

=
√
d
′
ηmin(U)−max

i
‖ui‖

≥
√
d′ηmin(U)− 1, (96)

where in the last line follows from the assumptions that u>i
∑
j uj = 1 for all i and that u > 0 to see that maxi ‖ui‖ ≤ 1. Note

also that

‖DA(u)u‖ ≤

∥∥∥∥∥∥∥∥

u>1 · · · u>1
...
u>
d′ · · · u

>
d′

u
∥∥∥∥∥∥∥∥+

√√√√ d′∑
i=1

‖ui‖4

= ‖1d′‖+ max
i
‖ui‖ · ‖u‖

≤
√
d′ +

√
k, (97)

where the last line follows because maxi ‖ui‖ ≤ 1 and ‖u‖ =
√
k by assumption. Consequently, we reach

ηmin(PTC(u)DA(u)>) ≥
√
d′
(
ηmin(U)−

1
√
k

)
− 2. (see (95)) (98)

By continuity, we extend the results to the case where u might have zero entries. Lastly, in the case where u ∈ int(C) (namely,

‖u‖ <
√
k and u > 0), we have that TC(u) = Rd and it directly follows from (96) that

ηmin(PTC(u)DA(u)) = ηmin(DA(u))

≥
√
d′ηmin(U)− 1. (see (96)) (99)

Having studied all cases for u for ρ = 0, we conclude that

ηmin ≥
√
d′
(
ηmin(U)−

1
√
k

)
− 2. (see (79)) (100)

Roughly speaking, as long as ηmin(U) & 1/
√
k, the right-hand side is greater than zero and the nonconvex Slater’s condition

holds. We assumed for simplicity that ρ = 0 but this is expected to hold for ρ sufficiently small as well by continuity.

New Slater’s condition Here we describe a variant of the Slater’s condition for Program (1).

Definition 2 (Nonconvex Slater’s condition) Let θmin be the smallest angle between to subspace and define ψ to be

ψA,C :=


infu sin (θmin(null(A), TC(u)))

Au 6= 0

u ∈ ∂C

=


infu ηmin

(
PTC(u)A

>)
Au 6= 0

u ∈ ∂C
(101)

18

where ∂C is the boundary of C, and ηmin returns the smallest singular value. We say that Program (1) satisfies the Slater’s
condition if ψA,C > 0.

As a sanity check, we have the following result.

Proposition 1 The nonconvex Slater’s condition for Program (1) implies the standard Slater’s condition when A is a linear
operator and Program (1) is feasible.

Proof Suppose that the standard Slater’s condition does not hold, namely, that

relint(null(A) ∩ C) = null(A) ∩ relint(C) = ∅. (102)

Since Program (1) is feasible, there exists a feasible u, namely, Au = 0 and u ∈ C. By (102), it must be that u ∈ ∂C and that
null(A) supports C at u Why?. In particular, it follows that null(A) ∩ TC(u) 6= {0} or, equivalently, row(A) ∩ NC(u) 6= {0}.
That is, there exists a unit-norm vector v such that

PTC(u)A
>v = 0, (103)

and consequently

ηmin(PTC(u)A
>) = 0. (104)

Because ηmin(PTC(u)A
>) is a continuous function of u (Why?), we conclude that ψA,C = 0, namely, the nonconvex Slater’s

condition also does not hold, thereby completing the proof of Proposition 1.

D Proof of Lemma 3

If A(uk) = b, then (57) holds trivially. Otherwise, for an integer k0, consider a subspace

SK ⊇
⋃
k∈K

TC(uk), (105)

and let SK with orthonormal columns denote a basis for this subspace, with some abuse of notation. We then assume that

0 < ηmin :=


minu

∥∥S>KPTC(u)(DA(u)>v)
∥∥

‖v‖ = 1

‖A(u)− b‖ ≤ ρ
u ∈ C.

(106)

If maxk∈K ‖A(uk)− b‖ ≤ ρ, then (106) is in force and, for every k ≥ k0, we may write that∥∥∥PTC(uk+1)
(DA(uk)>(A(uk)− b))

∥∥∥
≥
∥∥∥PTC(uk+1)

(DA(uk+1)>(A(uk)− b))
∥∥∥− ∥∥∥(DA(uk+1)−DA(uk))>(A(uk)− b)

∥∥∥ (non-expansiveness of projection)

≥ ηmin‖A(uk)− b‖ − ‖DA(uk+1)−DA(uk)‖ ‖A(uk)− b‖ (see (106))

≥ ηmin‖A(uk)− b‖ − λA‖uk+1 − uk‖ · ‖A(uk)− b‖ (see (2))

= (ηmin − λAγk‖Gk‖) ‖A(uk)− b‖ (see (40))

≥
ηmin

2
‖A(uk)− b‖, (107)

where the last line above uses the observation that

λAγk‖Gk‖ = λA‖uk+1 − uk‖
≤ λAdiam(C)

≤
ηmin

2
. (see (56)) (108)

We can now lower bound (51) by using (107), namely,

ηmin

2βk
‖A(uk)− b‖ ≤

1

βk
‖PTC(uk+1)

(DA(uk)>(A(uk)− b))‖ (see (107))

≤ λ′h + ηmax‖yk−1‖+ ‖Gk‖. (see (51)) (109)

which completes the proof of Lemma 3.

	Introduction
	 Preliminaries
	Algorithm & Convergence
	Related Work
	Numerical experiments
	Proof of Lemma 1
	Proof of Lemma 2
	Draft of convergence proof
	Proof of Lemma 3

