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1 Introduction

We study the nonconvex optimization program{
min
x

f(x) + g(x)

A(x) = 0,
(1)

where (possibly nonconvex) f : Rd → R and (possibly nonlinear) A : Rd → Rm
satisfy

‖∇f(x)−∇f(x′)‖ ≤ λf‖x− x′‖, ‖DA(x)−DA(x′)‖ ≤ λA‖x− x′‖, (2)

for every x, x′ ∈ Rd. Above, ∇f(x) ∈ Rd is the gradient of f at x and DA(x) ∈
Rm×d is the Jacobian of A at x. Moreover, we assume that g : Rd → R is a
proximal-friendly (but possibly nonsmooth) convex function.

A host of problems in computer science [?,?], machine learning [?,?], and
signal processing [?,?] naturally fall under the template of (1), including max-
cut, clustering, generalized eigenvalue, as well as community detection.

To address these applications, this paper builds up on the classical ideas in
linearized augmented Lagrangian framework and proposes a simple, intuitive,
and easy-to-implement algorithm to solve 1 with provable convergence rate
and under an interpretable geometric condition. In this context, we also de-
velop and analyze the Alternating Direction Method of Multipliers (ADMM).
Before we elaborate on the results, let us first motivate (1) with an important
application to Semi-Definite Programming (SDP):

Vignette: Burer-Monteiro splitting. A powerful convex relaxation for
max-cut, clustering, and several other problems mentioned above is provided
by the SDP {

min
X∈Sd×d

〈C,X〉

B(X) = b, X � 0,
(3)

where C ∈ Rd×d and X is a positive semidefinite and symmetric d×d matrix,
and B : Sd×d → Rm is a linear operator. If the unique-games conjecture is true,
SDPs achieve the best approximation for the underlying discrete problem [?].

Since d is often large, many first- and second-order methods for solving
such SDPs are immediately ruled out, not only due to their high computational
complexity, but also due to their storage requirements, which are O(d2).

A contemporary challenge in optimization therefore is to solve SDPs in
small space and in a scalable fashion. A recent algorithm, namely, homotopy
conditional gradient method based on Linear Minimization Oracles (LMO),
can address this template in small space via sketching [?]; however, such LMO-
based methods are extremely slow in obtaining accurate solutions.

A key approach for solving (1), dating back to [?,?], is the so-called Burer-
Monteiro (BR) factorization X = UU>, where U ∈ Rd×r and r is selected
according to the guidelines in [?,?]. AE: maybe we should call this fac-
torization vs splitting following the standard references like Global
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Optimality in Tensor Factorization, Deep Learning, and Beyond.
This factorization results in the following nonconvex problem{

min
U∈Rd×r

〈C,UU>〉

B(UU>) = b,
(4)

which can be written in the form of (1). When r is sufficiently large and under
some additional assumptions, (3) provably does not have any spurious local
minima [?,?].

The augmented Lagrangian method [?] provides a powerful framework to
solve (1), reviewed carefully in Section 7. Indeed, for positive β, it is easy to
verify that (1) is equivalent to

min
x

max
y
Lβ(x, y) + g(x), (5)

where

Lβ(x, y) := f(x) + 〈A(x), y〉+
β

2
‖A(x)− b‖2, (6)

is the augmented Lagrangian corresponding to (1). The equivalent formulation
in (5) naturally suggests the following iterative algorithm to solve (1):

xk+1 ∈ argmin
x
Lβ(x, yk) + g(x), (7)

yk+1 = yk + σkA(xk+1). (8)

Updating x above requires solving the nonconvex problem (7) to global op-
timality, which is often intractable. The key contribution of this paper is to
provably and efficiently address this challenge by proposing and analyzing a
linearized augmented Lagrangian algorithm, as well as its ADMM variant.

Contributions. In order to solve (1), this paper proposes to replace the
(intractable) problem (7) with the simple update

xk+1 = Pg(xk − γk∇Lβk
(xk, yk)), (9)

for carefully selected sequences {βk, γk}k. Here, Pg is the proximal operator
corresponding to g, which is often computationally inexpensive.

Put differently, instead of fully solving (7), this paper proposes to apply one
iteration of the proximal gradient algorithm for every primal update, which is
then followed by a dual update in (8) and an increase in the penalty weight β
to gradually enforce the (nonlinear) constraints in (1).

We prove that this fast and scalable Homotopy Linearized Augmented
Lagrangian (HoLAL) achieves first-order stationarity for (1) at the rate of
1/
√
k. Under standard additional conditions, we also establish local optimal-

ity, namely, HoLAL achieves second-order stationarity for (1). We also provide
an ADMM variant of HoLAL, with the same convergence rate, which is bet-
ter suited for a variety of problems that require splitting. AE: for example?



4 author et. al.

AE: How do the rates compare with competitors? Any high level ad-
vantage we might have over competitors? Like easy implementation
guidelines?

As with several other nonconvex solvers, the success of of HoLAL relies on
(a variant of) the uniform regularity AE: what to cite?, a geometric condi-
tion akin to the well-established Slater’s condition in convex optimization. In
fact, we establish that uniform regularity, when limited to convex problems, is
equivalent to the Slater’s condition. We also verify the uniform regularity in
several important examples.

2 Preliminaries

Notation. We use the notations 〈·, ·〉 and ‖ · ‖ for the standard inner product
and norm on Rd, respectively. Gradient of differentiable f : Rd → R at x is
denoted by ∇f(x). For a differentiable map A : Rd → Rm, DA(x denote its
Jacobian at x. For a convex function g : Rd → R, the subdifferential at x is
denoted by ∂g(x) and the proximal operator Pg : Rd → Rd takes x to

Pg(x) = argmin
y

g(y) +
1

2
‖x− y‖2. (10)

In addition, if g = 1C is the indicator function of a convex set or cone, we use
the simpler notation PC , instead of P1C , to denote the orthogonal projection
onto C. Throughout, g∗ and ∂g∗ will denote the Fenchel conjugate of g and its
subdifferential, respectively. For a cone C, we denote its polar by C∗, namely,

C∗ = {x : 〈x, x′〉 ≤ 0, ∀x′ ∈ C}. (11)

An integer interval is denoted by [k0 : k1] = {k0, · · · , k1} for integers k0 ≤
k1. For matrices, ‖ · ‖ and ‖ · ‖F denote the spectral and Frobenius norms,
respectively.

Necessary optimality conditions. Necessary optimality conditions for (1)
are well-studied [?]. Indeed, x is a first-order stationary point of (1) if there
exists y ∈ Rm for which{

−∇f(x)−DA(x)>y ∈ ∂g(x)

A(x) = 0.
(12)

Recalling (6), we observe that (12) is equivalent to{
−∇xLβ(x, y) ∈ ∂g(x)

A(x) = 0,
(13)
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which is in turn the first-order optimality condition for (5). For second-order
optimality conditions, we set g = 0 in (1) and assume that both f,A are twice-
differentiable. In this setting and after recalling (6), x is a local minimum of
(1) if there exists y ∈ Rm such that

∇2
xxL0(x, y) = ∇2f(x) +

m∑
i=1

yi∇2Ai(x), (14)

is positive semidefinite. Above, yi and Ai are the ith components of y and A,
respectively.

Technical lemmas. The following standard results and notions are frequently
used throughout this paper and proved in the appendix for completeness. The
first result below shows that the augmented Lagrangian is smooth, see Ap-
pendix C for the proof.

Lemma 1 (Smoothness) For fixed y ∈ Rm and β, ρ, ρ′ ≥ 0, it holds that

‖∇xLβ(x, y)−∇xLβ(x′, y)‖ ≤ λβ‖x− x′‖, ∀x, x′ ∈ Xρ,ρ′ , (15)

where

Xρ,ρ′ := {x′′ : ‖A(x′′)‖ ≤ ρ, ‖x′′‖ ≤ ρ′} ⊂ Rd, (16)

λβ := λf +
√
mλA (‖y‖+ βρ) + βdλ′2A, (17)

λ′A := max
‖x‖≤ρ′

‖DA(x)‖, (18)

and λf , λA were defined in (2).

Gradient mapping AE: what to cite?, defined below, plays an important
role in our convergence analysis.

Definition 1 (Gradient mapping) Given y ∈ Rd and γ > 0, the gradient
mapping Gβ,γ(·; y) : Rd → Rd takes x ∈ Rd to

Gβ,γ(x, y) =
x− x+

γ
, (19)

where x+ = Pg(x− γ∇xLβ(x, y)).

As the name suggests, if in particular we set g ≡ 0 in (1), the gradient mapping
reduces to Gβ,γ(x, y) = ∇f(x). Note also that Gβ,γ(x, y) = 0 implies that
−∇xLβ(x, y) ∈ ∂g(x). Therefore, in light of (13), a linear combination of
‖Gβ,γ(x, y)‖2 and the feasibility gap ‖A(x)‖2 is a natural metric to measure
the (first-order) stationarity of a pair (x, y) in problem (1).

For a sufficiently small step size γ, the gradient mapping controls the de-
scent in the objective function of (5). The following result is standard [?,
Lemma 3.2, Remark 3.2(i)], but the proof is given in Appendix D for com-
pleteness.
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Lemma 2 (Descent lemma) For x ∈ Rd and y ∈ Rm, let x+ = Pg(x −
γ∇xLβ(x, y)), where γ < 1/λβ. For ρ, ρ′ ≥ 0, suppose that

x, x+ ∈ Xρ,ρ′ = {x′ : ‖A(x′)‖ ≤ ρ, ‖x′‖ ≤ ρ′}. (20)

Then it holds that

‖Gβ,γ(x, y)‖2 ≤ 2

γ
(Lβ(x, y) + g(x)− Lβ(x+, y)− g(x+)). (21)

In practice, determining the step size γ by computing the right-hand side of
(17) is infeasible, since λf , λA, λ

′
A are often unknown. Instead, we can resort

to the line search technique, reviewed below and proved in Appendix E.

Lemma 3 (Line search) Fix θ ∈ (0, 1) and γ0 > 0. For γ′ > 0, let

x+γ′ = Pg(x− γ′∇xLβ(x, y)), (22)

and define

γ := max
{
γ′ = γ0θ

i : Lβ(x+γ′ , y)

≤ Lβ(x, y) +
〈
x+γ′ − x,∇xLβ(x, y)

〉
+

1

2γ′
‖x+γ′ − x‖

2
}
. (23)

Then, (6) holds and, moreover, we have that

γ ≥ θ

λβ
. (24)

3 Uniform Regularity

The Slater’s condition plays a key role in convex optimization as a sufficient
condition for strong duality. As a result, SC guarantees the success of a variety
of primal-dual algorithms for constrained convex programming. As a visual
example, in problem (1), when f = 0, g = 1C is the indicator function of a
bounded convex set C ⊂ Rd, and A is an affine operator, the Slater’s condition
removes any pathological cases, such as Figure 1, by ensuring that the affine
subspace is not tangent to C.

𝐶

null 𝐴

Fig. 1 Solving (1) can be particularly difficult, even when it is a convex program. As an
example, this figure shows a pathological case, where the Slater’s condition does not apply.
See Section 3 for more details.
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Likewise, to successfully solve problem (1) in the presence of nonlinear con-
straints, we require the following condition which, loosely speaking, extends
the Slater’s condition to the nonconvex setting, as clarified shortly afterwards.
This condition, in a sense, also extends the uniform regularity, introduced
in [?, Definition 2.3], to the more general problem 1.

Definition 2 (Uniform regularity) In problem (1), for ρ, ρ′ > 0 and sub-
space S ⊂ Rd, let us define

ν(g,A, S, ρ, ρ′) :=


min
v,x

‖PSPcone(∂g(x))∗ (DA(x)>v)‖
‖v‖

‖v‖ ≤ ρ
‖x‖ ≤ ρ′,

(25)

where cone(∂g(x)) is the cone formed by the subdifferential ∂g(x), Pcone(∂g(x))∗

projects onto the polar of this cone, and DA(x) is the Jacobian of A. We say
that (1) satisfies the uniform regularity if ν(g,A, S, ρ, ρ′) > 0.

Throughout, we will occasionally suppress the dependence of ν on some of its
parameters to unburden the notation. A few remarks about uniform regularity
are in order.

Jacobian DA. Let DA(x)>
QR
= Q(x)R(x) be the QR decomposition of DA(x)>.

As we will see shortly, DA(x)> in (25) might be replaced with its orthonor-
mal basis, namely, Q(x), to broaden the applicability of uniform regularity.
For simplicity, we will avoid this minor change and instead, whenever needed,
assume that DA(x) is nonsingular; otherwise a simple QR decomposition can
remove any redundancy from A(x) = 0 in (1).

Subspace S. The introduction of a subspace S in (25) broadens the applica-
bility of uniform regularity, as we will see shortly. In particular, when S = Rd,
the Moreau decomposition allows us to rewrite (25) as

ν(g,A, S, ρ, ρ′) :=


min
v,x

dist(DA(x)>v,cone(∂g(x)))
‖v‖

‖v‖ ≤ ρ
‖x‖ ≤ ρ′,

(26)

where dist(·, cone(∂g(x))) returns the Euclidean distance to cone(∂g(x)).

Convex case. To better parse Definition 2, let us consider the specific exam-
ple where f : Rd → R is convex, g = 1C is the indicator function for a bounded
convex set C ⊂ Rd, and A is a nonsingular linear operator represented with
the full-rank matrix A ∈ Rm×d. We also let TC(x) denote the tangent cone to
C at x, and reserve PTC(x) : Rd → Rd for the orthogonal projection onto this
cone.
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We can now study the geometric interpretation of uniform regularity in
this setting. Using the Moreau decomposition, it is not difficult to rewrite (25)
as

ν(g,A, S, ρ, ρ′) :=


min
v,x

‖PSPTC (x)A
>v‖

‖v‖

‖v‖ ≤ ρ
‖x‖ ≤ ρ′

=

{
min
x

ηmin

(
PSPTC(x)A

>)
‖x‖ ≤ ρ′,

(27)

where ηmin(·) returns the smallest singular value of its input matrix. Intuitively
then, the uniform regularity ensures that the row span of A is not tangent to C,
similar to the Slater’s condition, see Figure 1. This close relationship between
the uniform regularity and the Slater’s condition is formalized next and proved
in Appendix F.

Proposition 1 In (1), suppose that

– f : Rd → R is convex,
– g = 1C is the indicator on a convex set C ⊂ Rd,
– A : Rd → Rm is a nonsingular linear operator, represented with the full-

rank matrix A ∈ Rm×d,1

– and the problem is feasible, namely, there exists x ∈ C such that Ax = 0.

Then,

– problem (1) satisfies the Slater’s condition if there exists a subspace S ⊆ Rd
such that ν(g,A, S,∞,maxx∈C ‖x‖) > 0.

– Moreover, suppose that S is the affine hull of C. Then, (1) satisfies the
Slater’s condition if and only if ν(g,A, S,∞,maxx∈C ‖x‖) > 0.

Beyond the Slater’s condition. Unlike the Slater’s condition, ν also offers
information about the convergence speed. For example, suppose that m = 1,
so that A is a 1 × d row-vector. For a small perturbation vector ε ∈ Rd, let
C = {x ∈ Rd : (A + ε)x ≥ 0} be a half-space. Then the Slater’s condition
holds regardless of ‖ε‖. However, even though positive, ν(g,A,Rd) can be
made arbitrarily small by making ‖ε‖ small, which can lead to arbitrarily slow
convergence.

In this work, we will focus on instances of problem (1) that satisfy the
uniform regularity condition. To solve such problems, next section introduces
and studies the HoLAL algorithm. AE: maybe we should say that this
has precedent in the literature and that we’re not limiting ourselves
too much.

1 As mentioned earlier, it is easy to remove the full-rank assumption by replacing DA(x)
in (25) with its orthonormal basis. We assume A to be full-rank for the sake of clarity
at the cost of a simple QR decomposition to remove any “redundant measurements” from
problem (1).
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4 Linearized AL Algorithm

To solve the equivalent formulation of problem (1) presented in (5), we propose
a Homotopy Linearized Augmented Lagrangian algorithm (HoLAL), detailed
in Algorithm 4. At every iteration, Algorithm 4 takes a primal descent small
followed by a dual ascent step. The increasing sequence of penalty weights
{βk}k and the dual updates (Steps 6 and 7) are responsible for continuously
enforcing the constraints in (1).

As we will see in the convergence analysis, the particular choice of βk in
Algorithm 4 strikes a balance between reducing the objective of (1) and en-
forcing its constraints. Moreover, the choice of dual step size σk in Algorithm 4
ensures that the dual variable yk remains bounded; see [?] for a precedent in
the literature of augmented Lagrangian method with a similar choice for the
dual step size.

AE: we should at least say something about the adaptive version,
even if we don’t include the proof. maybe we should include the
algorithm, claim we have proved its convergence (which we did)
and then use it in simulations alongside the nonadaptive version.

Algorithm 1 HoLAL algorithm for solving problem (1)

Input: Parameters β1, σ1, ρ, τ > 0, primal initialization x1 ∈ Rd with ‖A(x1)‖ ≤ ρ, dual
initialization y1 ∈ Rm.

For k = 1, 2, . . . and until convergence, execute

1. (Update penalty weight) βk ← β1
√
k log(k + 1)/ log 2.

2. (Line search) Use the line search in (23) with x = xk, y = yk, β = βk and let γk ← γ.

3. (Primal descent step) xk+1 ← Pg(xk − γk∇Lβk (xk, yk)), where Lβk is the aug-
mented Lagrangian and Pg denotes the proximal operator, defined in (6,10), respectively.

4. (Stopping criterion) If γk‖Gβk,γk (xk, yk)‖2 +σk‖A(xk)‖2 ≤ τ , then quit and return
xk+1. See (19) for the definition of Gβk,γk .

5. (Update dual step size) σk+1 ← σ1 min
(

1√
k+1

,
‖A(x1)‖
‖A(xk+1)‖

· log2 2
(k+1) log2(k+2)

)
.

6. (Dual ascent step) yk+1 ← yk + σk+1A(xk+1).

At iteration k, if the primal step size γk is sufficiently small, Step 3 of Al-
gorithm 4 reduces the objective of (5). Uniform regularity ensures that this
update also reduces the feasibility gap of (1). This intuition is formalized below
and proved in Appendix G.

Lemma 4 For integers k0 < k1, consider the integer interval K = [k0 : k1].
Suppose that problem (1) satisfies uniform regularity and, more specifically,

ν(g,A, S, ρ, ρ′) ≥ 2λA max
k∈K

γk‖Gβk,γk(xk, yk)‖, (28)
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where λA was defined in (2) and

– ρ ≥ maxk∈K ‖A(xk)‖,
– ρ′ ≥ maxk∈K ‖xk‖,
– S ⊇

⋃
k∈K Pcone(∂g(xk+1))∗

(
DA(xk+1)>A(xk+1)

)
.

Then, for every k ∈ K, it holds that

‖A(xk)‖ ≤ 2

ν(g,A, ρ, ρ′)βk

(
‖Gβk,γk(xk, yk)‖+ λ′f + λ′A‖yk‖

)
, (29)

where

λ′f := max
‖x‖≤ρ′

‖∇f(x)‖, λ′A := max
‖x‖≤ρ′

‖DA(x)‖. (30)

Loosely speaking, as the penalty weight βk increases, the feasibility gap in (1)
reduces, as indicated in (29). Note that the larger ν, the more regular prob-
lem (1) is, and the smaller feasibility gap becomes. With the aid of Lemma 4,
we can derive the convergence rate of Algorithm 4 to a first-order stationary
point, with the proof deferred to Appendix A. For the convergence metric, we
will use linear combination of the gradient mapping and the feasibility gap of
problem (1), as motivated after Definition 1.

Theorem 1 (Convergence rate of HoLAL) For sufficiently large integers
k0 < k1, consider the interval K = [k0 : k1], and consider the output sequence
{xk, yk}k∈K of Algorithm 4. Suppose that

µ := −min(0, inf
k
f(xk) + g(xk) + 〈A(xk), yk0〉) <∞.

AE: note that mu and some other quantities are slightly changed
from the proof to simplify the presentation which is inconsequential
for the proof I think.For ρ′ &

√
µ, in addition to the strong smoothness of

f and A quantified in (2), let us define

λ′f = max
‖x‖≤ρ′

‖∇f(x)‖, λ′A = max
‖x‖≤ρ′

‖DA(x)‖, (31)

to be the (restricted) Lipschitz constants of f and A, respectively. Suppose also
that problem (1) satisfies uniform regularity and, more specifically,

ν(g,A, S, ρ, ρ′) & max

(
λA max

k∈K

√
γkµ,

λ′f + λ′A√
µ

)
, (32)

with

– ρ′ ≥ maxk∈K ‖xk‖,
– S ⊇

⋃
k∈K Pcone(∂g(xk+1))∗

(
DA(xk+1)>A(xk+1)

)
.
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Then the output of Algorithm 4 satisfies

min
k∈K

‖GβK ,γk(xk, yk)‖2

λAρ+ λ′2A

√
k0 log2(k0 + 1)

k1 log2(k1 + 1)
+ ‖A(xk)‖2

.
1

k1 − k0

(
λ′2f + λ′2A

ν(g,A, S, ρ, ρ′)2
+ µ

)
, (33)

where .,& above suppress the dependence on less important parameters, for
the sake of clarity. The exact expressions are found in (76,79,82).

A few remarks about Theorem 1 are in order.

Convergence rates. Loosely speaking, Theorem 1 states that Algorithm 4
achieves first-order stationarity for (1) by reducing the gradient map and the
feasibility gap at the rates

‖Gβk,γk(xk, yk)‖2 =
1

Õ(
√
k)
, ‖A(xk)‖ =

1

Õ(
√
k)
. (34)

AE: how does this rate compare with others?

Uniform regularity. As confirmed by (48), the larger ν(g,A, S, ρ, ρ′), the
more regular (1), and the faster convergence rate of Algorithm 4. In fact, for
Algorithm 4 to succeed, Theorem 1 requires ν to be sufficiently large (rather
than just positive). We do not know if this is an artifact of the proof of tech-
nique or a fundamental problem but it is naturally expected for the conver-
gence rate to at least slow down when ν decreases.

The right-hand side of (47) also depends on the largest primal step size
maxk∈K γk. Since γk is found by line search in Algorithm 4, we are unable
to upper bound this quantity unless we make further assumptions on prob-
lem (1), or slightly modify the algorithm to cap primal step sizes. However,
recall that the augmented Lagrangian Lβk

(·, yk) is λβk
Lipschitz gradient and

thus typically γk ≈ 1/λβk
, namely, γk ≈ 1/

√
k by (73,74).

Lastly note that smoother f,A also improve the convergence rate, see
(47,48). Indeed, as f,A becomes smoother, problem (1) more and more re-
sembles a convex program, at least locally.

Subspace S. The freedom over the choice of subspace S specified in Theo-
rem 1 is meant to further strengthen the result in the same spirit of the second
result in Proposition 1.

Faster rates. Linear convergence to a global minimizer of problem (1) can be
established for Algorithm 4 under restricted strong convexity and smoothness
for f in (1) and certain geometric regularities for A therein. AE: cite paper
with Fabian.

AE: what else should we talk about? what would the reviewers
ask? what would better clarify the result for average reader?
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5 Local Optimality

Theorem 1 establishes that HoLAL, being a first-order algorithm that does not
use any second-order information, achieves first-order stationarity for prob-
lem (1) but remains silent about local optimality. As shown in [?], finding
approximate second-order stationary points of convex-constrained problems is
in general NP-hard. For this reason, we focus in this section on the special
case of problem (1) with g = 0.

Special case. As an important special case of problem (1), if f is strongly
convex and the manifold {x : A(x) = 0} is smooth enough, then any first-
order stationary point of problem (1) is also a local minimum. Intuitively,
this happens because the second-order terms of the Lagrangian are locally
dominated by those of f . A concrete example is the factorized SDP in (4),
when C is positive definite. More formally, suppose that f is strongly convex
and both f,A are twice differentiable. For a feasible pair (x, y) in (1), recall
from (14) that

∇2
xxL0(x, y) = ∇2f(x) +

m∑
i=1

yi∇2Ai(x)

< ∇2f(x)− ‖
m∑
i=1

yi∇2Ai(x)‖ (Weyl’s inequality)

< ∇2f(x)− ‖y‖1 ·max
i
‖∇2Ai(x)‖

< ∇2f(x)−
√
m‖y‖2 ·max

i
‖∇2Ai(x)‖. (35)

Therefore, if the last line above is positive definite, then x is a local minimum of
problem (1). In particular, the proof of Theorem 1 establishes that the output
sequence (xk, yk) of Algorithm 4 satisfies ‖yk‖ ≤ ymax, where ymax is specified
in (71). As such, we conclude that the output sequence of Algorithm 4 reaches
second-order optimality if

min
‖x‖≤ρ′

ηmin(∇2f(x)) >
√
mymax ·max

i
max
‖x‖≤ρ′

‖∇2Ai(x)‖, (36)

namely, if f is sufficiently strongly convex and {Ai}i are sufficiently smooth.

General case. More generally, if every saddle point of (1) is strict, then one
can extend the analysis of [?] to show that Algorithm 4 almost surely does not
converge to a saddle point. AE: haven’t actually verified this. should we
go down this route?

AE: beyond this, what else can we say? maybe we can talk about
how in a lot of nonconvex problems (2nd order) local optimality
implies global optimality. but that’s not the focus of this paper and
we should mention it in passing.
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6 Linearized ADMM

In convex optimization, whenever applicable, Alternating Direction Method
of Multipliers (ADMM) [?,?,?] often outperforms the augmented Lagrangian
method. Additionally, ADMM often more efficiently incorporates any proximal
operators. AE: this is very vague and hand-wavy. what to say? Inspired
by the success of ADMM in convex optimization, in this section we develop
and study a (linearized) ADMM variant of Algorithm 4. More specifically,
consider the program{

min
x,z

f(x) + g(x) + h(z) + l(z)

A(x) +B(z) = 0,
(37)

where f, h : Rd → R and A,B : Rd → Rd are smooth in the sense that

‖∇f(x)−∇f(x′)‖ ≤ λf‖x− x′‖, ‖DA(x)−DA(x′)‖ ≤ λA‖x− x′‖,

‖∇h(z)−∇h(z′)‖ ≤ λh‖z − z′‖, ‖DB(z)−DB(z′)‖ ≤ λB‖z − z′‖, (38)

for every x, x′, z, z′ ∈ Rd. Above, g, l : Rd → R are proximal-friendly convex
functions. AE: should we give a ”vignette” here too? what would it
be? For penalty weight β ≥ 0, the augmented Lagrangian corresponding to
problem (37) is

Lβ(x, z, y) = f(x) + h(z) + 〈A(x) +B(z), y〉+
β

2
‖A(x) +B(z)‖2, (39)

and problem (37) is therefore equivalent to the minimax program

min
x,z

max
y
Lβ(x, z, y). (40)

To solve the equivalent formulation in (40), we propose the linearized ADMM,
detailed in Algorithm 6. Most remarks about Algorithm 4 apply to Algorithm 6
as well and, in particular, note that Algorithm 6 performs two consecutive
primal updates, one on x and then one on z.

To parse the details of Algorithm 6, we need to slightly change the gradient
map in Definition 1 and the line search procedure in Lemma 3 to match Lβ
in (39). More specifically, the corresponding gradient maps are defined as

Gβ,γ(x, z, y) =
x− x+

γ
, Hβ,ι(x, z, y) =

z − z+

ι
, (41)

where

x+ = Pg(x− γ∇xLβ(x, z, y)), z+ = Pl(z − ι∇zLβ(x, z, y)), (42)

and γ, ι > 0 are the primal step sizes. The line search procedure too is similar
to Lemma 3 and we set

x+γ′ = Pg(x− γ′∇xLβ(x, z, y)),
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z+ι′ = Pl(z − ι′∇zLβ(x, z, y)), (43)

γ := max
{
γ′ = γ0θ

i : Lβ(x+γ′ , z, y)

≤ Lβ(x, z, y) +
〈
x+γ′ − x,∇xLβ(x, z, y)

〉
+

1

2γ′
‖x+γ′ − x‖

2
}
, (44)

ι := max
{
ι′ = ι0θ

i : Lβ(x, z+ι′ , y)

≤ Lβ(x, z, y) +
〈
z+ι′ − z,∇zLβ(x, z, y)

〉
+

1

2ι′
‖z+ι′ − z‖

2
}
. (45)

The analysis of Algorithm 6 is similar to that of Algorithm 4, involving also a
similar version of Lemma 4. The convergence rate of Algorithm 6 is detailed
below and proved in Appendix B.

Algorithm 2 Linearized ADMM for solving problem (40)

Input: Parameters β1, σ1, ρ, τ > 0, primal initialization x1, z1 ∈ Rd with
‖A(x1) +B(z1)‖ ≤ ρ, dual initialization y1 ∈ Rm.

For k = 1, 2, . . ., execute

1. (Update penalty weight) βk ← β1
√
k log(k + 1)/ log 2.

2. (Line search in x) Use the line search procedure in (44) by replacing
x = xk, z = zk, y = yk, β = βk and let γk ← γ be the output.

3. (Descent step in x) xk+1 ← Pg(xk − γk∇xLβk (xk, zk, yk)), where Lβk is the aug-
mented Lagrangian and Pg denotes the proximal operator, defined in (6,10), respectively.

4. (Line search in z) Use the line search procedure in (23) by replacing
x = xk+1, z = zk, y = yk, β = βk and let ιk ← ι be the output.

5. (Descent step in z) zk+1 ← Pl(zk − ιk∇zLβk (xk+1, zk, yk)), where Pl denotes the
proximal operator for l.

6. (Stopping criterion) If γk‖Gβk,γk (xk, zk, yk)‖2 + ιk‖Gβk,ιk (xk+1, zk, yk)‖2 +

σk‖A(xk) + B(zk)‖2 ≤ τ , then quit and return xk+1, zk+1. See (19) for the definition
of the gradient mapping.

7. (Update dual step size) σk+1 ← σ1 min
(

1√
k+1

,
‖A(x1)+B(z1)‖

|A(xk+1)+B(zk+1)‖
· log2 2
(k+1) log2(k+2)

)
.

8. (Dual ascent step) yk+1 ← yk + σk+1(A(xk+1) +B(zk+1)).

Theorem 2 (Convergence rate of linearized ADMM) For sufficiently
large integers k0 < k1, consider the interval K = [k0 : k1], and consider the
output sequence {xk, yk}k∈K of Algorithm 4. Suppose that

µ := −min(0, inf
k
f(xk) + g(xk) + 〈A(xk), yk0〉)

−min(0, inf
k
h(zk) + l(zk) + 〈B(zk), yk0〉) <∞.
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AE: note that mu and some other quantities are slightly changed
from the proof to simplify the presentation which is inconsequential
for the proof I think. For ρ′ &

√
µ, in addition to the strong smoothness of

f and A quantified in (2), let us define

λ′f = max
‖x‖≤ρ′

‖∇f(x)‖, λ′A = max
‖x‖≤ρ′

‖DA(x)‖,

λ′h = max
‖z‖≤ρ′

‖∇h(x)‖, λ′B = max
‖z‖≤ρ′

‖DB(x)‖, (46)

to be the (restricted) Lipschitz constants of f,A, h,B. Suppose also that prob-
lem (1) satisfies uniform regularity and, more specifically,

ν(g,A, l, B, S, ρ, ρ′) & max

(
(λA + λB) max

k∈K

√
(γk + ιk)µ,

λ′f + λ′A√
µ

)
, (47)

with

– ρ′ ≥ maxk∈K ‖xk‖, ρ′ ≥ maxk∈K ‖zk‖,
– S ⊇

⋃
k∈K Pcone(∂g(xk+1))∗

(
DA(xk+1)>(A(xk+1) +B(zk+1))

)
,

– S ⊇
⋃
k∈K Pcone(∂l(zk+1))∗

(
DB(zk+1)>(A(xk+1) +B(zk+1))

)
.

Then the output of Algorithm 4 satisfies

min
k∈K

(
‖GβK ,γk(xk, zk, yk)‖2 + ‖HβK ,ιk(xk+1, zk, yk)‖2

min(λA, λB)ρ+ min(λ′2A, λ
′2
B)

√
k0 log2(k0 + 1)

k1 log2(k1 + 1)

+ ‖A(xk) +B(zk)‖2
)

.
1

k1 − k0

(
λ′2f + λ′2A + λ′2h + λ′2B
ν(g,A, l, B, S, ρ, ρ′)2

+ µ

)
, (48)

where .,& above suppress the dependence on less important parameters, for
the sake of clarity.

Most of the remarks after Theorem 1 apply to Theorem 2 too.

7 Related Works

AE: looks like major revision is required here... Augmented Lagrangian
based methods are first proposed in [?, ?]. In the convex setting, standard,
inexact and linearized versions of ALM are studied extensively [?, ?, ?, ?].
Some works also considered the application of ALM/ADMM to nonconvex
problems [?,?]. These works assume that the operator in (1) is linear, therefore,
they do not apply to our setting.

Series of influential papers from Burer and Monteiro [?,?] proposed using
the splitting X = UU∗ and suggested solving the problem using ALM. First,
they did not have any inexact analysis, their analysis requires primal subprob-
lems to be solved exactly which is not practical. Secondly, they have to put
an artificial bound to the primal domain which will be ineffective in practice;
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which is impossible to do without knowing the norm of the solution. Lastly,
their results are for convergence only, without any rate guarantees.

The authors focused on the special case of SDPs without linear constraints
in [?] and [?]. They prove the convergence of gradient descent on Burer-
Monteiro factorized formulation. Their results are not able to extend to linear
constraints and general convex functions.

Another line of work focused on solving a specific kind of SDPs by applying
gradient descent or trust regions methods on manifolds [?, ?]. The authors
show that they can apply gradient descent on manifolds to satisfy the first
order stationarity conditions in O(1/ε2) iterations. In addition, they apply
trust regions methods on manifolds to satisfy the second order stationarity
conditions in O(1/ε3) iterations. Firstly, these methods have to assume that
the problem will be on a smooth manifold, which holds for Maximum Cut and
generalized eigenvalue problems, but is not satisfied for other important SDPs
such as quadratic programming (QAP) and optimal power flow. Secondly, as
noted in [?], per iteration cost of their method for Max-Cut problem is O(n6)
for solving (??) which is astronomically larger than our cost of O(n2r) where
r � n.

Another recent line of work [?] focused on solving the nonlinear constrained
nonconvex problem template (??) by adapting the primal-dual method of
Chambolle and Pock [?]. The authors proved the convergence of the method
with rate guarantees by assuming error bound conditions on the objective
function, which is not necessarily satisfied for general SDPs.

[?] focused on the penalty formulation of (??) and studied the optimality
of second order stationary points of the formulation. However, their results
are for connecting the stationary points of the penalty formulation of non-
convex problem to the penalty formulation of convex problem and not to the
constrained problem itself.

[?] can handle the same problem but their algorithm is much more com-
plicated than ours.

8 Experiments

AE: we need a plan for this.

A Proof of Theorem 1

For the reader’s convenience, let us recall the updates of the algorithm in iteration k:

xk+1 = Pg(xk − γk∇xLβk (xk, yk))

= Pg
(
xk − γk∇f(xk)

− γkDA(xk)> (yk + βkA(xk))
)
, (see (6)) (49)

yk+1 = yk + σk+1A(xk+1). (50)
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Moreover, we will use the shorthand

Gk = Gβk,γk (xk, yk) =
xk − xk+1

γk
, (see (19)) (51)

throughout the proof. For integers k0 ≤ k1, consider the interval

K = [k0 : k1] = {k0, · · · , k1}. (52)

Since the primal step size γk is determined by the line search subroutine in Lemma 3, we
may now apply Lemma 2 for every iteration in the interval K to find that

γk‖Gk‖2

2
≤ Lβk (xk, yk) + g(xk)− Lβk (xk+1, yk)− g(xk+1) (see Lemma 2)

= f(xk) + g(xk)− f(xk+1)− g(xk+1) + 〈A(xk)−A(xk+1), yk〉

+
βk

2
(‖A(xk)‖2 − ‖A(xk+1)‖2), (see (6)) (53)

for every k ∈ K. On the other hand, note that

yk = yk0−1 +

k∑
i=k0

σiA(xi), (see (50)) (54)

which, after substituting in (53), yields that

γk‖Gk‖2

2
≤ f(xk) + g(xk)− f(xk+1)− g(xk+1)

+

〈
A(xk)−A(xk+1), yk0 +

k∑
i=k0+1

σiA(xi)

〉

+
βk

2
(‖A(xk)‖2 − ‖A(xk+1)‖2). (55)

By summing up (55) over k from k0 to k1, we argue that

k1∑
k=k0

γk‖Gk‖2

2

≤ f(xk0 ) + g(xk0 )− f(xk1+1)− g(xk1+1) + 〈A(xk0 )−A(xk1+1), yk0 〉

+

k1∑
k=k0

k∑
i=k0+1

σi 〈A(xk)−A(xk+1), A(xi)〉

+

k1∑
k=k0

βk

2
‖A(xk)‖2 −

k1∑
k=k0

βk

2
‖A(xk+1)‖2 (see (55))

= f(xk0 ) + g(xk0 )− f(xk1+1)− g(xk1+1) + 〈A(xk0 )−A(xk1+1), yk0 〉

+

k1∑
k=k0

k∑
i=k0+1

σi 〈A(xk)−A(xk+1), A(xi)〉

+

k1∑
k=k0

βk

2
‖A(xk)‖2 −

k1+1∑
k=k0+1

βk−1

2
‖A(xk)‖2. (56)
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By manipulating the last line above, we find that

k1∑
k=k0

γk‖Gk‖2

2

≤ f(xk0 ) + g(xk0 )− f(xk1+1)− g(xk1+1) + 〈A(xk0 )−A(xk1+1), yk0 〉

+
βk0
2
‖A(xk0 )‖2 +

k1∑
i=k0+1

k1∑
k=i

σi 〈A(xk)−A(xk+1), A(xi)〉

+

k1∑
k=k0+1

βk − βk−1

2
‖A(xk)‖2 −

βk1
2
‖A(xk1+1)‖2

≤ µ+

k1∑
i=k0+1

σi
〈
A(xi)−A(xk1+1), A(xi)

〉

+

k1∑
k=k0+1

βk − βk−1

2
‖A(xk)‖2 −

βk1
2
‖A(xk1+1)‖2 (see (58))

= µ+

k1∑
k=k0+1

(
σk +

βk − βk−1

2

)
‖A(xk)‖2

−
k1∑

k=k0+1

σk
〈
A(xk1+1), A(xk)

〉
−
βk1
2
‖A(xk1+1)‖2, (57)

where we assumed that

µ := max

(
sup
k

(
f(xk0 ) + g(xk0 )− f(xk)− g(xk) + 〈A(xk0 )−A(xk), yk0 〉

+
βk0
2
‖A(xk0 )‖2

)
, 0

)
<∞, (58)

Given initial step sizes βk0 , σk0 > 0, recall that the penalty weights and the dual step sizes
of Algorithm 4 are set to

βk = βk0

√
k log2(k + 1)

k0 log2(k0 + 1)
,

σk = σk0 min

(√
k0

k
,
‖A(xk0 )‖k0 log2(k0 + 1)

‖A(xk)‖k log2(k + 1)

)
, ∀k ∈ K. (59)
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For future reference, (59) implies that

βk − βk−1 = βk−1

(√
k log2(k + 1)

(k − 1) log2 k
− 1

)

≤ βk−1 ·
k log2(k + 1)− (k − 1) log2 k

(k − 1) log2 k

≤ βk−1

(
k log2(1 + 1

k
)

(k − 1) log2 k
+

1

k − 1

)

≤
2βk−1

k − 1
(k0 � 1)

≤
2βk0
k − 1

√
(k − 1) log2 k

k0 log2(k0 + 1)

=
2βk0 log k√

(k − 1)k0 log(k0 + 1)
, ∀k ∈ K, (60)

when k0 is sufficiently large. We can therefore further simplify the last line of (57) as

k1∑
k=k0

γk‖Gk‖2

2

≤ µ+

k1∑
k=k0

(
σk +

βk − βk−1

2

)
‖A(xk)‖2

+

k1∑
k=k0

σk‖A(xk1+1)‖‖A(xk)‖ −
βk1
2
‖A(xk1+1)‖2 (see (57))

≤ µ+

k1∑
k=k0

(
σk +

βk − βk−1 + 1

2

)
‖A(xk)‖2

+
1

2

 k1∑
k=k0

σ2
k − βk1

 ‖A(xk1+1)‖2 (2ab ≤ a2 + b2)

≤ µ+ 2

k1∑
k=k0

‖A(xk)‖2, (see (59,60)) (61)

for sufficiently large k0. Indeed, the coefficient of ‖A(xk1+1)‖ in the second-to-last line of
(61) is negative because

k1∑
k=k0

σ2
k − βk1

≤
k1∑
k=k0

σ2
k0
k0

k
− βk0

√
k1 log2(k1 + 1)

k0 log2(k0 + 1)

≤ 2σ2
k0
k0

∫ k1

k0

da

a
− βk0

√
k1 log2(k1 + 1)

k0 log2(k0 + 1)

≤ 0, (62)

when k0 is sufficiently large. Note that (61) bounds the gradient mapping with the feasibility
gap. A converse is given by Lemma 4. In order to apply this result, let us assume that the
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assumptions in Lemma 4 are met. Lemma 4 is then in force and we may now substitute (29)
back into (61) to find that

k1∑
k=k0

γk‖Gk‖2

≤ 2

k1∑
k=k0

‖A(xk)‖2 + 2µ (see (61))

≤ 2

k1∑
k=k0

(
2

νβk

(
‖Gk‖+ λ′f + λ′A‖yk‖

))2

+ 2µ (see (29))

≤
k1∑
k=k0

32‖Gk‖2

ν2β2
k

+

k1∑
k=k0

8λ′2f

ν2β2
k

+

k1∑
k=k0

8λ′2A‖yk‖
2

ν2β2
k

+ 2µ, (63)

where we used the shorthand ν = ν(g,A, S, ρ, ρ′) and the last line above uses the inequality(
p∑
i=1

ai

)2

≤ p
p∑
i=1

a2i , (64)

for integer p and scalars {ai}i. If we set

BK =

k1∑
k=k0

‖yk‖2

k log2(k + 1)
, c ≥

∞∑
k=1

1

k log2(k + 1)
, (65)

and, after recalling the choice of {βk}k in (59), the last line of (63) can be simplified as

k1∑
k=k0

γk‖Gk‖2 ≤ 2

k1∑
k=k0

‖A(xk)‖2 + 2µ

≤
k1∑
k=k0

32‖Gk‖2k0 log2(k0 + 1)

ν2β2
k0
k log2(k + 1)

+

k1∑
k=k0

8λ′2f k0 log2(k0 + 1)

ν2β2
k0
k log2(k + 1)

+ 2µ

+

k1∑
k=k0

8λ′2Ak0 log2(k0 + 1)‖yk‖2

ν2k log2(k + 1)
+ 2µ (see (59))

≤
k1∑
k=k0

32‖Gk‖2k0 log2(k0 + 1)

ν2β2
k0
k log2(k + 1)

+
8k0 log2(k0 + 1)

ν2β2
k0

(
cλ′2f + λ′2ABK

)
+ 2µ. (see (65)) (66)

To simplify the above bound, let us assume that

32k0 log2(k0 + 1)

ν2β2
k0
k log2(k + 1)

≤
γk

2
, ∀k ∈ K. (67)

After rearranging (66) and applying (67), we arrive at

k1∑
k=k0

γk

2
‖Gk‖2

≤
k1∑
k=k0

(
γk −

32k0 log2(k0 + 1)

ν2β2
k0
k log2(k + 1)

)
‖Gk‖2 (see (67))

≤
8k0 log2(k0 + 1)

ν2β2
k0

(
cλ′2f + λ′2ABK

)
+ 2µ. (see (68)) (68)
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In turn, the bound above on the gradient mapping controls the feasibility gap, namely,

k1∑
k=k0

‖A(xk)‖2 ≤
k1∑
k=k0

γk‖Gk‖2

4
+

4k0 log2(k0 + 1)

ν2β2
k0

(
cλ′2f + λ′2ABK

)
(see (66,67))

≤
8k0 log2(k0 + 1)

ν2β2
k0

(
cλ′2f + λ′2ABK

)
+ µ. (see (68)) (69)

By adding (68,69), we find that

k1∑
k=k0

γk‖Gk‖2 + ‖A(xk)‖2 ≤
24k0 log2(k0 + 1)

ν2β2
k0

(
cλ′2f + λ′2ABK

)
+ 5µ. (70)

In order to interpret (70), we next estimate BK , defined in (65). To that end, let us first
control the growth of the dual sequence {yk}k. Recalling (50) and for every k ∈ K, we write
that

‖yk‖ ≤ ‖yk0‖+
k∑

i=k0+1

σi‖A(xi)‖ (see (50))

≤ ‖yk0‖+

k∑
i=k0+1

ρσk0k0 log2(k0 + 1)

k log2(k + 1)
(see (??,59))

≤ ‖yk0‖+ cρσk0k0 log2(k0 + 1)

=: ymax. (71)

With the growth of the dual sequence discovered above, we evaluate BK as

BK =

k1∑
k=k0

‖yk‖2

k log2(k + 1)
(see (65))

≤
k1∑
k=k0

y2max

k log2(k + 1)
(see (71))

≤ cy2max. (see (65)) (72)

In order to interpret (70), it still remains to estimate the primal step sizes {γk}k. To invoke
(24), we in turn need to gauge how smooth the augmented Lagrangian Lβk (·, yk) is. For
every k ∈ K, note that

λβk ≤ λf +
√
mλA (‖yk‖+ βkρ) + βkdλ

′2
A (see (17))

≤ (λf +
√
mλAymax) + βk

(√
mλAρ+ dλ′2A

)
. (see (71)) (73)

We are now in position to invoke (24) by writing that

γk ≥
θ

λβk
(see (24))

≥
θ

(λh +
√
mλAymax) + βk

(√
mλAρ+ dλ′2A

) (see (73))

≥
θ

2βk
(√
mλAρ+ dλ′2A

) ((59) and k0 � 1)

≥
θ

2βk0
(√
mλAρ+ dλ′2A

)√k0 log2(k0 + 1)

k log2(k + 1)
(see (59))

=: γ

√
k0 log2(k0 + 1)

k log2(k + 1)
, (74)
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for every k ∈ K. The first consequence of (74) is that (67) holds automatically when k0
is sufficiently large. Having estimated BK and {γk}k, we can also rewrite (70). Indeed,
(70,72,74) together imply that

k1∑
k=k0

γ‖Gk‖2
√
k0 log2(k0 + 1)

k log2(k + 1)
+ ‖A(xk)‖2

≤
24ck0 log2(k0 + 1)

ν2β2
k0

(
λ′2f + λ′2Ay

2
max

)
+ 5µ, (75)

and, consequently,

min
k∈K

γ‖Gk‖2
√
k0 log2(k0 + 1)

k1 log2(k1 + 1)
+ ‖A(xk)‖2

≤
24ck0 log2(k0 + 1)

ν2β2
k0

(k1 − k0)

(
λ′2f + λ′2Ay

2
max

)
+

5µ

k1 − k0
. (76)

When we applied Lemma 4 earlier, we did not check whether the assumptions on ρ therein
hold. Let us revisit this assumption. We first derive a weaker but uniform bound on the
feasibility gap. For every k ∈ K, it holds that

‖A(xk)‖2 ≤
k1∑
i=k0

‖A(xi)‖2

≤
8k0 log2(k0 + 1)

ν2β2
k0

(
cλ′2f + λ′2ABK

)
+ µ (see (69))

≤
8ck0 log2(k0 + 1)

ν2β2
k0

(
λ′2f + λ′2Ay

2
max

)
+ µ. (see (72)) (77)

Therefore, we may replace the assumption on ρ in Lemma 4 with the stronger assumption
that

ρ2 ≥
8ck0 log2(k0 + 1)

ν2β2
k0

(
λ′2f + λ′2Ay

2
max

)
+ µ, (78)

which, after rearranging, can be presented as

ν2 ≥
8ck0 log2(k0 + 1)

β2
k0

(ρ2 − µ)

(
λ′2f + λ′2Ay

2
max

)
, ρ >

√
µ. (79)

Note that, for (79) to hold, it is in particular necessary that ‖A(xk0 )‖ ≤ ρ
√

2/βk0 , as seen
in (58). That is, for Algorithm 4 to success, it must be initialized close enough to the feasible
set. Lastly, let us revisit the lower bound on ν in Lemma 4, namely, (28). First we derive a
weaker but uniform bound on the gradient mapping. For every k ∈ K, it holds that

max
k∈K

γk‖Gk‖

≤ max
k∈K

√
γk ·

√
max
k∈K

γk‖Gk‖2

≤ max
k∈K

√
γk ·

√√√√√ k1∑
k=k0

γk‖Gk‖2

≤ max
k∈K

√
γk ·

(
16ck0 log2(k0 + 1)

ν2β2
k0

(
λ′2f + λ′2Ay

2
max

)
+ 4µ

) 1
2

. (see (68,72)) (80)
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Instead of (28), it therefore suffices to make the stronger assumption that

ν ≥ 2λA max
k∈K

√
γk ·

(
16ck0 log2(k0 + 1)

ν2β2
k0

(
λ′2f + λ′2Ay

2
max

)
+ 4µ

) 1
2

, (81)

which can in turn be replaced with the stronger assumptions

ν ≥ max

(
4
√

2λA max
k∈K

√
γkµ,

2
√
ck0 log(k0 + 1)

βk0
√
µ

(λ′f + λ′Aymax)

)
(82)

This completes the proof of Theorem 1.

B Proof of Theorem 2

For completeness, let us repeat the technical lemmas and definitions of Section 2, slightly
adjusted here for the augmented Lagrangian of problem (40), defined in (39). These standard
results are stated below without proof.

Lemma 5 (Smoothness) Given ρ, ρ′ ≥ 0, it holds that

‖∇xLβ(x, z, y)−∇xLβ(x′, z, y)‖ ≤ λβ,z‖x− x′‖,

‖∇zLβ(x, z, y)−∇zLβ(x, z′, y)‖ ≤ λβ,x‖z − z′‖, (83)

for every (x, z), (x′, z), (x, z′) ∈ Xρ,ρ′ and y ∈ Rm, where

Xρ,ρ′ := {(x′′, z′′) : ‖A(x′′) +B(z′′)‖ ≤ ρ, ‖x′′‖ ≤ ρ′, ‖z′′‖ ≤ ρ′}, (84)

λβ,x ≤ λf +
√
mλA (‖y‖+ βρ) + βdλ′2A .

λβ,z ≤ λh +
√
mλB (‖y‖+ βρ) + βdλ′2B , (85)

λ′A := max
‖x‖≤ρ′

‖DA(x)‖, λ′B := max
‖z‖≤ρ′

‖DB(z)‖, (86)

and λf , λA, λh, λB were defined in (38).

Definition 3 (Gradient Mapping) Given x, z ∈ Rd and γ, ι > 0, the gradient mappings
Gβ,γ(·, z, y), Gβ,ι(x, ·, y) : Rd → Rd take, respectively, x, z ∈ Rd to

Gβ,γ(x, z, y) =
x− x+

γ
, Hβ,ι(x, z, y) =

z − z+

ι
, (87)

where x+ = Pg(x− γ∇xLβ(x, z, y)) and z+ = Pl(z − ι∇zLβ(x, z, y)).

Lemma 6 (Descent lemma) For x, z ∈ Rd and y ∈ Rm, let x+, z+ be as in Definition 3
with γ < 1/λβ,x and ι < 1/λβ,z. For ρ, ρ′ ≥ 0, suppose that

(x, z), (x+, z), (x, z+) ∈ Xρ,ρ′ . (88)

Then it holds that

‖Gβ,γ(x, z, y)‖2 ≤
2

γ
(Lβ(x, z, y) + g(x)− Lβ(x+, z, y)− g(x+)),

‖Hβ,ι(x, z, y)‖2 ≤
2

ι
(Lβ(x, z, y) + l(x)− Lβ(x, z+, y)− l(x+)). (89)
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Lemma 7 (Line search) Fix θ ∈ (0, 1) and γ0, ι0 > 0. For γ′, ι′ > 0, let

x+
γ′ = Pg(x− γ′∇xLβ(x, z, y)), z+

ι′ = Pl(z − ι′∇zLβ(x, z, y)), (90)

and define

γ := max
{
γ′ = γ0θ

i : Lβ(x+
γ′ , z, y)

≤ Lβ(x, z, y) +
〈
x+
γ′ − x,∇xLβ(x, z, y)

〉
+

1

2γ′
‖x+
γ′ − x‖

2
}
,

ι := max
{
ι′ = ι0θ

i : Lβ(x, z+
ι′ , y)

≤ Lβ(x, z, y) +
〈
z+
ι′ − z,∇zLβ(x, z, y)

〉
+

1

2ι′
‖z+
ι′ − z‖

2
}
. (91)

Then, (89) holds and, moreover, we have that

γ ≥
θ

λβ,x
, ι ≥

θ

λβ,z
. (92)

For the reader’s convenience, let us also recall the updates of Algorithm 6 in iteration k as

xk+1 = Pg(xk − γk∇xLβk (xk, zk, yk)),

zk+1 = Pl(zk − ιk∇zLβk (xk+1, zk, yk)),

yk+1 = yk + σk+1(A(xk+1) +B(zk+1)). (93)

For every k ∈ K = [k0 : k1], recall that the primal step sizes γk, ιk are determined by line
search in Lemma 7. Moreover, the penalty weights and dual step sizes are set as

βk = βk0

√
k log2(k + 1)

k0 log2(k0 + 1)
,

σk = σk0 min

(√
k0

k
,
‖A(xk0 ) +B(zk0 )‖
‖A(xk) +B(zk)‖

·
k0 log2(k0 + 1)

k log2(k + 1)

)
. (94)

For every k ∈ K, let us set

Gk = Gβk,γk (xk, zk, yk) =
xk − xk+1

γk
,

Hk = Hβk,ιk (xk+1, zk, yk) =
zk − zk+1

ιk
, (95)

for short. The convergence analysis of Algorithm 6 only slightly differs from the one in the
proof of Theorem 1 and we therefore only present the proof sketch, somewhat informally.
Similar to the proof of Theorem 1, two applications of Lemma 6 yields that

γk‖Gk‖2

2
≤ Lβk (xk, zk, yk) + g(xk)− Lβk (xk+1, zk, yk)− g(xk+1),

ιk‖Hk‖2

2
≤ Lβk (xk+1, zk, yk) + l(zk)− Lβk (xk+1, zk+1, yk)− l(zk+1), (96)

for every k. By setting

uk = [ x>k z>k ]> ∈ R2d, Qk = [G>k H>k ]> ∈ R2d, q(u) = f(x) + h(z),
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q′(u) = g(x) + l(z), D(u) = A(x) +B(z), κk = min(γk, ιk), (97)

for every k ∈ K and after summing up the two inequalities in (96), we reach

κk‖Qk‖2

2
≤ Lβk (uk, yk) + q′(uk)− Lβk (uk+1, yk)− q′(uk+1), ∀k ∈ K. (98)

By following the same steps as in the proof of Theorem 1, we find that

k1∑
k=k0

κk‖Qk‖2

2
≤ µ+ 2

k1∑
k=k0

‖A(xk) +B(zk)‖2, (99)

where

µ := max

(
sup
k

(
q(uk0 ) + q′(uk0 )− q(uk)− q′(uk) + 〈A(xk0 ) +B(zk0 )−A(xk)−B(zk), yk0 〉

+
βk0
2
‖A(xk0 ) +B(zk0 )‖2

)
, 0

)
<∞. (100)

On the other hand, the x and z updates in (93) imply that

Gk −∇f(xk)−DA(xk)>yk

− βk DA(xk)>(A(xk) +B(zk)) ∈ ∂g(xk+1), (101)

Hk −∇h(zk)−DB(zk)>yk

− βk DB(zk)>(A(xk+1) +B(zk)) ∈ ∂l(zk+1), (102)

which can be more compactly written as

Qk −∇q(uk)−DD(uk)>yk − βk DD(uk)>D(uk)

+ βk

[
0

DB(zk)>(A(xk)−A(xk+1))

]
∈ ∂q′(uk+1). (103)

Note that (103) is similar to (121), except for its last term, which satisfies

βk

∥∥∥∥[ 0
DB(zk)>(A(xk)−A(xk+1))

]∥∥∥∥
= βk‖DB(zk)>(A(xk)−A(xk+1)‖
≤ βkλ′Aλ

′
B‖xk − xk+1‖ (see (86))

= βkγkλ
′
Aλ
′
BGk, (see (87)) (104)

and it is not difficult to verify that maxk≥k0 βkγk = O(1). From this point, the rest of the
proof steps of Lemma 4 and Theorem 1 can be applied directly to complete the proof of
Theorem 2.

C Proof of Lemma 1

AE: We assume Hessian exists. We shouldn’t assume that for a strictly correct
proof! Do you know how to correct this? Note that

Lβ(x, y) = f(x) +
m∑
i=1

yiAi(x) +
β

2

m∑
i=1

(Ai(x))2, (105)
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which implies that

∇xLβ(x, y) = ∇f(x) +

m∑
i=1

yi∇Ai(x) +
β

2

m∑
i=1

Ai(x)∇Ai(x)

= ∇f(x) +DA(x)>y + βDA(x)>A(x), (106)

where DA(x) is the Jacobian of A at x. By taking another derivative with respect to x, we
reach

∇2
xLβ(x, y) = ∇2f(x) +

m∑
i=1

(yi + βAi(x))∇2Ai(x) + β
m∑
i=1

∇Ai(x)∇Ai(x)>. (107)

It follows that

‖∇2
xLβ(x, y)‖ ≤ ‖∇2f(x)‖+ max

i
‖∇2Ai(x)‖ (‖y‖1 + β‖A(x)‖1) + β

m∑
i=1

‖∇Ai(x)‖2

≤ λh +
√
mλA (‖y‖+ β‖A(x)‖) + β‖DA(x)‖2F . (108)

For every x such that ‖A(x)‖ ≤ ρ and ‖x‖ ≤ ρ′, we conclude that

‖∇2
xLβ(x, y)‖ ≤ λf +

√
mλA (‖y‖+ βρ) + β max

‖x‖≤ρ′
‖DA(x)‖2F , (109)

which completes the proof of Lemma 1.

D Proof of Lemma 2

Throughout, let

G = Gβ,γ(x, y) =
x− x+

γ
, (110)

for short. Suppose that ‖A(x)‖ ≤ ρ, ‖x‖ ≤ ρ, and similarly ‖A(x+)‖ ≤ ρ, ‖x+‖ ≤ ρ′. An
application of Lemma 1 yields that

Lβ(x+, y) + g(x+) ≤ Lβ(x, y) + 〈x+ − x,∇xLβ(x, y)〉+
λβ

2
‖x+ − x‖2 + g(x+)

= Lβ(x, y)− γ〈G,∇xLβ(x, y)〉+
γ2λβ

2
‖G‖2 + g(x+) (111)

Since x+ = Pg(x− γ∇xLβ(x, y)), we also have that

G−∇xLβ(x, y) = ξ ∈ ∂g(x+). (112)

By combining (111,112), we find that

Lβ(x+, y) + g(x+) ≤ Lβ(x, y)− γ‖G‖2 + γ〈G, ξ〉+
γ2λβ

2
‖G‖2 + g(x+)

= Lβ(x, y)− γ‖G‖2 + 〈x− x+, ξ〉+
γ2λβ

2
‖G‖2 + g(x+)

≤ Lβ(x, y) + g(x)− γ
(

1−
γλβ

2

)
‖G‖2, (113)

where the last line above uses the convexity of g. Recalling that γ ≤ 1/λβ completes the
proof of Lemma 2.
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E Proof of Lemma 3

By optimality of x+γ in (22), we note that

x+γ − x+ γ∇xLβ(x, y) = −γξ ∈ −γ∂g(x+γ ). (114)

By definition in (23), γ also satisfies

Lβ(x+γ , y) + g(x+γ )

≤ Lβ(x, y) +
〈
x+γ − x,∇xLβ(x, y)

〉
+

1

2γ
‖x+γ − x‖2 + g(x+γ )

= Lβ(x, y) +
〈
x− x+γ , ξ

〉
−

1

2γ
‖x+γ − x‖2 + g(x+γ )

≤ Lβ(x, y)−
1

2γ
‖x+γ − x‖2 + g(x)− g(x+γ ) (convexity of g)

= Lβ(x, y)−
γ

2
‖Gβ,γ(x, y)‖2 + g(x)− g(x+γ ), (see Definition 1) (115)

which completes the proof of Lemma 3 since (24) follows directly from (23).

F Proof of Proposition 1

To prove the first claim of the proposition, suppose that the Slater’s condition does not
hold, namely, suppose that

null(A) ∩ relint(C) = ∅, (116)

where null(A) and relint(C) denote the null space of the matrix A and the relative interior
of C, respectively. We have assumed that (1) is feasible, namely, there exists x ∈ C such
that Ax = 0. It follows from (116) that x ∈ boundary(C) and that null(A) supports C at x,
namely, Ax ≥ 0, for every x ∈ C. (The inequality applies to each entry of the vector Ax.)
Consequently, null(A) ∩ TC(x) 6= {0}, where TC(x) is the tangent cone of the set C at x0.
Equivalently, it holds that row(A) ∩ NC(x) 6= {0}, where row(A) is the row space of the
matrix A and NC(x) is the normal cone to C at x. That is, there exists a unit-norm vector
v such that PTC(x)A

>v = 0 and, consequently, PSPTC(x)A
>v = 0. Let us take ρ′ = ‖x‖ in

(27). We then conclude that

ν(g,A, S, 1, ‖x‖) = ν(g,A, S,∞, ‖x‖) = 0,

namely, the uniform regularity also does not hold for any ρ ≥ 0 and ρ′ = ‖x‖. The above
identity follows from the homogenity of the right-hand side of (27). Because increasing ρ′

cannot increase the right-hand side of (25), we find that ν(g,A, S,∞,maxx∈C ‖x‖) = 0,
which proves the first claim in Proposition 1.

For the converse, we can verify that it suffices to take row(A) ⊆ S. Next, suppose that
uniform regularity does not hold, namely, there exists x ∈ Rd such that

ηmin(PSPTC(x)A
>) = 0. (117)

Throughout, we assume without loss of generality that x ∈ C. Indeed, otherwise x would not
be feasible for problem (1) with g = 1C and cannot be used to study the Slater’s condition
in (1). Note that (117) can be rewritten as

ηmin(PSPTC(x)A
>) = ηmin(PTC(x)A

>) = 0, (S = aff(C)) (118)

where aff(C) is the affine hull of C. Then, since ‖x‖ ≤ ρ′ < ∞ in (27), we can assume
throughout that boundary(C)∩Bρ′ 6= ∅ and, moreover, x ∈ boundary(C). Here, Bρ′ = {z :
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‖z‖ ≤ ρ′} is the ball of radius ρ′ at the origin. Indeed, otherwise if x ∈ relint(C), we have
that TC(x) = S and thus

ηmin(PSPTC(x)A
>) = ηmin(PTC(x)A

>) (S = aff(C))

= ηmin(A>) (row(A) ⊆ S)

> 0,

which contradicts (117). The last line above holds because, by assumption, A is full-rank.
Therefore, by (118), there exists a unit-norm u ∈ row(A) such that u ∈ NC(x). In turn, this
implies that null(A)∩ int(C) = ∅. Indeed, otherwise, any vector v ∈ null(A)∩ int(C) satisfies
〈u, v〉 < 0, which is impossible because u ∈ row(A) and v ∈ null(A) are orthogonal vectors.
That is, the Slater’s condition does not hold, which proves the second claim in Proposition 1.

G Proof of Lemma 4

By assumption, we have that

max
k∈K

‖A(xk)‖ ≤ ρ, max
k∈K

‖xk‖ ≤ ρ′. (119)

From the x update in (49), it follows that

xk+1 − xk + γk∇f(xk) + γk DA(xk)>(yk + βkA(xk)) ∈ −∂g(xk+1), (120)

which, after recalling (51), can be written as

−
Gk

βk
+
∇f(xk)

βk
+

DA(xk)>yk
βk

+ DA(xk)>A(xk) ∈ −
∂g(xk+1)

βkγk
. (121)

Let cone(∂g(x))∗ denote the polar of

cone(∂g(x))) =
⋃
α≥0

α · ∂g(x) ⊆ Rd. (122)

By projecting both sides (121) onto cone(∂g(xk+1))∗, we find that

Pcone(∂g(xk+1))
∗

(
−
Gk

βk
+
∇f(xk)

βk
+

DA(xk)>yk
βk

+ DA(xk)>A(xk)

)
∈ Pcone(∂g(xk+1))

∗

(
−
∂g(xk+1)

βkγk

)
= {0}, (123)

where the equality above follows from the duality of cone(∂g(xk+1))∗ and cone(∂g(xk+1)).
Recall also that the subspace S ⊆ Rd satisfies

S ⊇
⋃
k∈K

Pcone(∂g(xk+1))
∗

(
DA(xk+1)>A(xk+1)

)
, (124)

and project both sides of (123) onto S to reach

PSPcone(∂g(xk+1))
∗

(
−
Gk

βk
+
∇f(xk)

βk
+

DA(xk)>yk
βk

+ DA(xk)>A(xk)

)
= 0. (125)

By taking the norm and then applying the triangle inequality above, we argue that∥∥∥PSPcone(∂g(xk+1))
∗ (DA(xk)>A(xk))

∥∥∥
≤
∥∥∥∥PSPcone(∂g(xk+1))

∗

(
−
Gk

βk
+
∇f(xk)

βk
+

DA(xk)>yk
βk

)∥∥∥∥ (see (125)). (126)
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Because proximal map is non-expansive and PSPcone(∂g(xk+1))
∗ (0) = 0, we may upper

bound the last line above as∥∥∥PSPcone(∂g(xk+1))
∗ (DA(xk)>A(xk))

∥∥∥
≤
∥∥∥∥−Gkβk +

∇f(xk)

βk
+

DA(xk)>yk
βk

∥∥∥∥
≤

1

βk

(
‖Gk‖+ ‖∇f(xk)‖+ ‖DA(xk)>yk‖

)
. (triangle inequality)

≤
1

βk

(
‖Gk‖+ λ′f + λ′A‖yk‖

)
, (127)

where

λ′f := max
‖x‖≤ρ′

‖∇f(x)‖, λ′A := max
‖x‖≤ρ′

‖DA(x)‖. (128)

To lower bound the first line of (127), we invoke the restricted injectivity in Section 3.
Indeed, recalling (25) and the first bound in (119), for every k ∈ K, we write that∥∥∥PSPcone(∂g(xk+1))

∗ (DA(xk)>A(xk))
∥∥∥

≥
∥∥∥PSPcone(∂g(xk+1))

∗ (DA(xk+1)>A(xk))
∥∥∥− ∥∥∥(DA(xk+1)−DA(xk))>A(xk)

∥∥∥
≥ ν(g,A, S, ρ, ρ′)‖A(xk)‖ − ‖DA(xk+1)−DA(xk)‖‖A(xk)‖, (see (25)) (129)

where the second line above again uses the non-expansiveness of PS and Pcone(∂g(xk+1))
∗ .

The remaining term in (129) is bounded as

‖DA(xk+1)−DA(xk)‖ ≤ λA‖xk+1 − xk‖ = λAγk‖Gk‖. (see (2,119)) (130)

Assuming that

ν(g,A, S, ρ, ρ′) ≥ 2λA max
k∈K

γk‖Gk‖, (131)

allows us to simplify the last line of (129) as∥∥∥PSPcone(∂g(xk+1))
∗ (DA(xk)>A(xk))

∥∥∥ ≥ ν(g,A, S, ρ, ρ′)

2
‖A(xk)‖, (132)

which, after substituting in (127), yields that

‖A(xk)‖ ≤
2

βkν(g,A, S, ρ, ρ′)

(
‖Gk‖+ λ′f + λ′A‖yk‖

)
, (133)

and completes the proof of Lemma 4.
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