
EPFL Fall 2018 Scientific Programming
Doctoral School for Engineers
Civil and Environmental Engineering

Week 13 — Eigen: linear algebra applied to the heat equation

The goal of this exercise is to use the external library Eigen made for high performance vector and linear
algebra computations.
We will use it to a heat equation implicit solver based on the finite-difference scheme (see the 1D application
example on the Wikipedia page).
Use the starting point from GIT for this exercise

Exercise 1: Code discovery

We have replaced a few classes that were previously implemented by hand with Eigen classes.

Exercise 2: Solver implementation

We now implement a solver of the transient heat equation in two dimensions:

ρC
∂θ

∂t
− κ

(
∂2θ

∂x2 + ∂2θ

∂y2

)
= hv,

where ρ is the mass density, C is the specific heat capacity, κ is the heat conductivity, hv is the volumetric
heat source and the primary unknown is θ, the temperature.

This time, we implement a finite-differences scheme. The idea of this scheme is to approximate the derivatives
∂2θ
∂x2 and ∂2θ

∂y2 by their finite difference approximation, that is (for a given time t):

∂2θ

∂x2 (x, y) ≈ θ(x − ∆x, y) − 2θ(x, y) + θ(x + ∆x, y)
∆x2 and ∂2θ

∂y2 (x, y) ≈ θ(x, y − ∆y) − 2θ(x, y) + θ(x, y + ∆y)
∆y2

Or in discretized form, if δθi,j = ∂2θ
∂x2 (xi, yj) + ∂2θ

∂y2 (xi, yj) and ∆x = ∆y = a:

δθi,j = θi−1,j + θi,j−1 − 4θi,j + θi+1,j + θi,j+1
a2 (1)

This time, we implement an implicit time solver (backward Euler) for the diffusion equation. We introduce
the finite difference for the time derivative:

∂θ

∂t
(tn+1) = θn+1 − θn

∆t
(2)

Pluging equations (1) and (2) into the heat equation and solving for θn+1 gives:

θn+1
i,j − ∆tκ

ρC
δθn+1

i,j = ∆t

ρC
hn+1

v,i,j + θn
i,j (3)

Let us collect all unknowns θn+1
i,j into a large vector Θn+1, then equation (3) turns into a (sparse) linear

system of equations:

(
I − ∆tκ

ρC
∆fd

)
Θn+1 = ∆t

ρC
Hn+1

v + Θn (4)

where ∆fd is a matrix with coefficients resulting from (1) and Hn+1
v collects into a large vector the value of

the internal heat at each particle.

https://en.wikipedia.org/wiki/Heat_equation
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Finite_difference_method#Example:_The_heat_equation


1. Create a class ComputeTemperatureFiniteDifferences.

2. Assemble the right hand side of equation (4) into an Eigen VectorXd. We have extended the Eigen::Matrix
class in the file matrix_eigen_addons.hh to have a simple iterator. This means you can use range-for
loops and standard algorithms for complex vector manipulation. For more help, please refer: Eigen
VectorXd.

3. Assemble the matrix of system (4) into an Eigen SparseMatrix.
Eigen::SparseMatrix<double> A(rows, cols); // by default column major
A.insert(i, j) = ... // specific entry at ith row and jth column
A.coeffRef(i, j) += ... // to add to the previous value at ith row and jth

column

For more help, please refer: Eigen SparseMatrix.

4. Solve the system using SparseLU. The Eigen Sparse solver expects a compressed and column major
Eigen::SparseMatrix. For more help, please refer: Eigen Sparse LU Solver.

5. Write tests for you implementation (you can re-use last week’s tests).

6. How many times are you factorizing the matrix in a simulation? Is it necessary? What can you change
in the code to avoid uncessary factorizations?

7. Compare the performance of the finite-differences solver to the FFT solver.

2

http://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
http://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html
http://eigen.tuxfamily.org/dox/group__TutorialSparse.html
http://eigen.tuxfamily.org/dox/classEigen_1_1SparseLU.html

