
EPFL Fall 2018 Scientific Programming
Doctoral School for Engineers
Civil and Environmental Engineering

Week 5 — Manipulating classes with Python

The goal of the present exercise is to program a family of objects to compute series and to dump them. We
will use Python for this exercise. In Python the concept of interfaces does not exist. You can therefore write
both the definition and the implementation of your classes in the same .py file. However, by convention
this file should be named like the class it contains, e.g. dumper_series.py for the class DumperSeries.

Exercise 1: Series class

1. Create a class named Series which will be the mother class for all other series classes. The keyword pass
ensures that the function can be called without problem even though no implementation is provided.
As example the constructor of Series does nothing in this case.

class Series:
def __init__(self):

pass

Since this class is not computing any type of series but serves just as an interface for its subclasses the
function compute cannot be implemented for this series. Instead you can raise an exception when
this function is called on an object of type Series in order to ensure that no object of this class can
be used. The class therefore acts as an abstract class.

def compute(self, N):
raise Exception("pure virtual function")

This simple class will represent the interface of the family of classes inheriting from Series.

2. Create a class named ComputeArithmetic which inherits from Series and which implements the
converging series:

Sn =
N∑

k=1
k

in the function
def compute(self, N):

...
return series_value

3. Create (instantiate) a ComputeArithmetic object in the main and call the compute method, to
output the result to screen (using print), and test the program.

4. Create another ComputePi class which computes the series converging towards pi:

π =

√√√√6
N∑

k=1

1
k2

5. Modify the main to decide which of ComputeArithmetic or ComputePi is to be instantiated.



Exercise 2: Dumper class

1. Create a class named DumperSeries with a constructor taking a Series object as a paramter:
class DumperSeries:

def __init__(self, series):
self.series = series

Define for this class a function dump which will raise an exception when it is called:
def dump(self):

raise Exception("pure virtual function")

Therefore, this simple class will represent the interface of the classes inheriting from DumperSeries
but no object of the class itself can be created.

2. Create a class named PrintSeries which inherits from DumperSeries. This class will output (to
screen) every step out of frequency that is lower than maxiter. Thus frequency and maxiter should be
declared as members and set by the constructor. Implement the method dump.

3. Create (instanciate) a PrintSeries object in themain and call the dump method onto the previously
created Series reference.

4. In the Series class, append the virtual method
def getAnalyticPrediction(self):

raise Exception("pure virtual function")

which provides the analytic prediction of a class. Implement the overriding method in theComputePi
class.

5. In the dump function of the PrintSeries class, use the analytic prediction to get the convergence
towards the limit.

6. Create another class named PlotSeries which also inherits from DumperSeries. Implement the
method dump which will plot numerical results of all steps lower than maxiter. It should also plot
the analytical prediction.

7. Modify the main to decide which of PrintSeries or PlotSeries is to be instantiated.

Exercise 3: Series complexity

1. Evaluate the global complexity of your program

2. Modify the Series class to have the members
def __init__(self):

self.current_term = 0
self.current_value = 0;

3. Use these members in ComputeArithmetic and ComputePi in order to prevent re-computation
of the entire series each time a DumperSeries would call it. Factorize the code as much as possible
(by writing generic behavior in the Series class directly)

4. How is the complexity now ?

5. In the case you want to reduce the rounding errors over floating point operation by summing terms
reversely, what is the best complexity you can achieve ?

2


