
EPFL Fall 2018 Scientific Programming

Doctoral School for Engineers

Civil and Environmental Engineering

Week 6 — Homework: C++ classes

The goal of the present exercise is to program a family of object to compute series and to dump them.

Exercise 1: Creating a Project directory

A a good coding practice, includes program structure. Through this exercise, you are asked to create the
following directory structure:

homework2/

-- src/ # contains .hh and .cc files

-- CMakeLists.txt

-- main.cc

-- build/ # folder for compilation (not to be commited)

CMakeLists.txt

.gitignore

README.md

1. Create an empty main.cc in src folder. Create a CMakeLists.txt to compile the main.cc in a
separate build folder. Run the generated executable. Remember for the above directory structure
there will be two CMakeLists.txt files. One at root level and other inside the src folder. The
CMakeLists.txt at root level will have the following structure:

cmake_minimum_required(...)

add_subdirectory(...) # directory you want to add or contains executable files

The CMakeLists.txt in src folder will add the executable files.
add_executable(...) # .cc files

2. Create a .gitignore which contains necessary file/file extensions that are not to be pushed to the
repository.

3. Git push the current state of the project as your first commit.

We will maintain the above directory structure for the rest of the exercise.

Exercise 2: Series class

In this exercise, we encourage you to use algorithms from the Standard Template Library (STL) as much
as possible. Also, please remember that class definitions and method declarations should be put in .hh files
whereas method implementations should be put in .cc files.

1. What is the best way/strategy to divide the work among yourselves? Please answer this question in
the README file.

2. Create a class named Series with the pure virtual function
class Series{

public:

virtual double compute(unsigned int N) = 0;

}

Flavio Raschella

This simple class will represent the interface of the family of classes inheriting from Series.

3. Create a class named ComputeArithmetic which inherits from Series and which implements the
series:

Sn =
Nÿ

k=1
k

in the function
double compute(unsigned int N);

4. Create (instantiate) a ComputeArithmetic object in the main and call the compute method, to
output the result to screen (using std::cout), and test the program. You may need to #include the
input-output stream objects of the standard library. Look for the proper header on the web.

5. Create another ComputePi class which computes the series converging towards pi:

fi =
ı̂ıÙ6

Nÿ

k=1

1
k2

6. Modify the main to decide at execution time which of ComputeArithmetic or ComputePi is to
be instantiated and store the result in a Series pointer. Do not forget to delete memory allocated
with new after usage in order to avoid memory leaks.

Exercise 3: Dumper class

1. Create a class named DumperSeries of the kind
class DumperSeries{

public:

virtual void dump() = 0;

protected:

Series & series;

}

Please note the pure virtual function which says that this simple class will represent the interface of
the classes inheriting from DumperSeries.

2. Create a class named PrintSeries which inherits from DumperSeries. This class will output (to
screen) every step out of frequency that is lower than maxiter. Thus frequency and maxiter should be
declared as members and set by the constructor. Implement the method dump.

3. Create (instanciate) a PrintSeries object in the main and call the dump method to output the
previously created Series reference.

4. In the Series class, append the method
virtual double getAnalyticPrediction();

which provides the analytic prediction of a class. The default should return Not a Number (use the
function nan()). Implants the correct implementation in the ComputePi class.

5. In the dump function of the PrintSeries class, use the analytic prediction to provide the convergence
towards the limit (only when the analytic prediction is available, i.e. is not NaN).

2

6. Create another class named WriteSeries which also inherits from DumperSeries. Implement the
method dump which write numerical results of all steps lower than maxiter in a file. It should also
write the analytical prediction.

7. Implement a function setSeparator in WriteSeries which takes separator/delimiter as an argument.
Depending on the separator, the method dump should generate di�erent file formats. For example,
comma (,) separator should generate a .csv file, space/tab () separator should generator a .txt file
and pipe (|) separator should generate .psv file. By default, it should write a .txt file.

8. Create a python script which reads the file and plots the numerical results.

9. Modify the main to decide whether the results should be printed on the screen or written to a file.

10. Use a stringstream object to concatenate the arguments stored in argv. Then unstack the arguments
directly to the required variables.

Exercise 4: std::ostream manipulation

1. In class DumperSeries change the dump method definition to be:
virtual void dump(std::ostream & os) = 0;

Implement the needed changes in class PrintSeries to use this generic std::ostream instead of simply
std::cout.

2. In class PrintSeries provide a default parameter as std::cout:
void dump(std::ostream & os = std::cout);

3. Append a method in class DumperSeries to specify the required precision
virtual void setPrecision(unsigned int precision);

4. Use that precision in the dump method of PrintSeries.

5. In file dumper_series.hh append the operator declaration:
inline std::ostream & operator <<(std::ostream & stream, DumperSeries & _this) {

_this.dump(stream);

return stream;

}

6. Now you can use any object inheriting from DumperSeries with ostreams in the main: instantiate
a output filestream object ofstream to output the result of the dump directly to a file.

Exercise 5: Series complexity

1. Evaluate the global complexity of your program

2. Modify the Series class to have the members
unsigned int current_index;

double current_value;

3. Use these members in ComputeArithmetic and ComputePi in order to prevent re-computation
of the entire series each time a DumperSeries would call it. Factorize the code as much as possible
(by writing generic behavior in the Series class directly)

4. How is the complexity now ?

5. In the case you want to reduce the rounding errors over floating point operation by summing terms
reversely, what is the best complexity you can achieve ?

3

