
EPFL Fall 2018 Scientific Programming
Doctoral School for Engineers
Civil and Environmental Engineering

Week 8 — Generic Particle Method Program
Kepler orbits

The goal of the present exercise is to setup the first stone for our particle method program.
The documentation for the particle’s code is provided on the Moodle. Please refer to the documentation to
understand the structure of the code, class hierarchy and methods to implement.

Exercise 1: Input/Output object

In order to read and write sets of particles we need to implement methods that read from files or write to
files.

1. Implement the missing parts of the object
class CsvReader

which wants to read some particle characteristics from a file. Each line in the file will have the format
x y z vx vy vz fx fy fz mass radius name

To achieve this, use an ifstream object, read line by line using the function getline.
while (is.good()) {

getline(is, line);

...

}

For each line construct a stringstream and use the operator » towards a newly instantiated Particle
object. For this to work as expected you have to implement the methods

void Particle::initself(std::istream & is);
void Planet::initself(std::istream & is);

Finally insert the created particle to the system.

2. Implement the class
class CsvWriter

Each line in the produced file will have the format
x y z vx vy vz fx fy fz mass radius name

To achieve this, loop over all the particles stored in the particles member and use « operator towards
an adequately opened files. Again you have to implement the methods

void Planet::printself(std::ostream & stream) const;
void Particle::printself(std::ostream & stream) const;

3. Construct an input file with your favorite text editor and test that your routines work as expected.

http://www.cplusplus.com/reference/fstream/ifstream/
http://www.cplusplus.com/reference/string/string/getline/?kw=getline
http://www.cplusplus.com/reference/sstream/stringstream/?kw=stringstream

Exercise 2: Computing the gravitational forces

For any particle i in the set, the force felt due to the gravitational field follows :

f i =
∑
j 6=i

rij

rij

Gmimj

r2
ij

where we have rij = pj−pi is the vector from particle i towards particle j with the distance being rij = ||rij ||,
mi is the mass of particle i and G is the gravitational constant.

1. Implement the computation of the force in the class
class ComputeGravity

2. What is the complexity of the computation of forces for all the particles ?

Exercise 3: Time integration

In order to make the particles evolve with time an explicit scheme is needed:

1. vi+ = dt
2mi

f i

2. pi+ = dtvi

3. Compute the forces f i

4. vi+ = dt
2mi

f i

The purpose of the ComputeVerletIntegration is to perform this scheme.

1. Implement the class
class ComputeVerletIntegration;

Exercise 4: Kepler orbits

Following Kepler theory, the two body gravitational problem yields a conic section trajectory with an ec-
centricity changing from ellipse to parabola and hyperbola. (see http://en.wikipedia.org/wiki/Kepler_
orbit).

1. In the main you can implement the creation of the integration scheme and/or the force computation
objects.

2. In the main you can implement the iteration loop, with CSV outputs made at a chosen frequency.

3. Set an input file with two particles of mass m1 = 1. and m2 = 1. with initial states being

• p1 = (0, 0, 0) and v1 = (0, 0, 0)

• p2 = (1, 0, 0) and v2 = (0, 1.2, 0)

4. Modify the V erlet integrator so as to fix the first particle (which will play the role of the sun). Run
the code with a gravitational constant of 1, a timestep dt of 5.10−3 and during 1000 steps.

5. Observe the trajectory using matplotlib or paraview. What is the trajectory like ?

6. Modify the initial condition to yield a different trajectory type.

7. Once everything is working, please decide what should the evolve method of the class SystemEvolution
should contain. Adapt the code in consequence.

2

http://en.wikipedia.org/wiki/Kepler_orbit
http://en.wikipedia.org/wiki/Kepler_orbit

