4

Iterative Methods for Solving Linear Systems

[terative methods formally yield the solution x of a linear system after an
infinite number of steps. At each step they require the computation of the
residual of the system. In the case of a full matrix, their computational cost is
therefore of the order of n? operations for each iteration, to be compared with
an overall cost of the order of §n3 operations needed by direct methods. Itera-
tive methods can therefore become competitive with direct methods provided
the number of iterations that are required to converge (within a prescribed
tolerance) is either independent of n or scales sublinearly with respect to n.

In the case of large sparse matrices, as discussed in Section 3.9, direct
methods may be unconvenient due to the dramatic fill-in, although extremely
efficient direct solvers can be devised on sparse matrices featuring special
structures like, for example, those encountered in the approximation of partial
differential equations (see Chapters 12 and 13).

Finally, we notice that, when A is ill-conditioned, a combined use of direct
and iterative methods is made possible by preconditioning techniques that
will be addressed in Section 4.3.2.

4.1 On the Convergence of Iterative Methods

The basic idea of iterative methods is to construct a sequence of vectors x(¥)
that enjoy the property of convergence

x = lim x*), (4.1)
k—o0
where x is the solution to (3.2). In practice, the iterative process is stopped at
the minimum value of n such that ||x(™) — x| < e, where ¢ is a fixed tolerance
and || - || is any convenient vector norm. However, since the exact solution is
obviously not available, it is necessary to introduce suitable stopping criteria
to monitor the convergence of the iteration (see Section 4.6).

126 4 Tterative Methods for Solving Linear Systems
To start with, we consider iterative methods of the form
given x(0, x(F+1) = Bx) + f k>0, (4.2)

having denoted by B an n X n square matrix called the iteration matrix and
by f a vector that is obtained from the right hand side b.

Definition 4.1 An iterative method of the form (4.2) is said to be consistent
with (3.2) if f and B are such that x = Bx + f. Equivalently,

f=(I-B)A 'b.

Having denoted by
e = x(k) _ x (4.3)

the error at the k-th step of the iteration, the condition for convergence (4.1)
amounts to requiring that lim e*) = 0 for any choice of the initial datum

k—o0
x(0) (often called the initial guess).
Consistency alone does not suffice to ensure the convergence of the iterative
method (4.2), as shown in the following example.

Example 4.1 To solve the linear system 2Ix = b, consider the iterative method
xFHD — () b,

which is obviously consistent. This scheme is not convergent for any choice of the
initial guess. If, for instance, x(0 = 0, the method generates the sequence x(2F) = 0,
xZHY) —p k=0,1,....

On the other hand, if x(©) = %b the method is convergent. °

Theorem 4.1 Let (4.2) be a consistent method. Then, the sequence of vectors
{x(k)} converges to the solution of (3.2) for any choice of x(0) 4ff p(B) < 1.

Proof. From (4.3) and the consistency assumption, the recursive relation e**1) =

Be™® is obtained. Therefore,
e =BFe® vk=0,1,... (4.4)

Thus, thanks to Theorem 1.5, it follows that lim B*e'®) = 0 for any e(® iff p(B) < 1.

k— o0

Conversely, suppose that p(B) > 1, then there exists at least one eigenvalue
A(B) with module greater than 1. Let e® be an eigenvector associated with A; then
Be® = Xe(® and, therefore, e®) = A*e(®. As a consequence, e'®) cannot tend to
0 as k — oo, since |A| > 1. &

From (1.23) and Theorem 1.4 it follows that a sufficient condition for conver-
gence to hold is that ||B|| < 1, for any consistent matrix norm. It is reasonable

4.1 On the Convergence of Iterative Methods 127

to expect that the convergence is faster when p(B) is smaller so that an es-
timate of p(B) might provide a sound indication of the convergence of the
algorithm. Other remarkable quantities in convergence analysis are contained
in the following definition.

Definition 4.2 Let B be the iteration matrix. We call:

1. ||B™|| the convergence factor after m steps of the iteration;
2. [[B™||Y/™ the average convergence factor after m steps;
3. Rn(B) = —-Llog|B™|| the average convergence rate after m steps.

These quantities are too expensive to compute since they require evaluating
B™. Therefore, it is usually preferred to estimate the asymptotic convergence
rate, which is defined as

R(B) = klim Ri(B) = —log p(B), (4.5)
where Property 1.14 has been accounted for. In particular, if B were sym-
metric, we would have

1
Rin(B) = —— log |[B™[]2 = — log p(B).

In the case of nonsymmetric matrices, p(B) sometimes provides an overop-
timistic estimate of ||[B™||"/™ (see [Axe94], Section 5.1). Indeed, although
p(B) < 1, the convergence to zero of the sequence [|B"| might be non-
monotone (see Exercise 1). We finally notice that, due to (4.5), p(B) is the
asymptotic convergence factor. Criteria for estimating the quantities defined
so far will be addressed in Section 4.6.

Remark 4.1 The iterations introduced in (4.2) are a special instance of
iterative methods of the form

X(O) - fO(A7 b)7

x(mtD) = £ (x(M x(=D_ x(=m) A b)), for n > m,

where f; and x("), ..., x(1) are given functions and vectors, respectively. The
number of steps which the current iteration depends on is called the order of
the method. If the functions f; are independent of the step index ¢, the method
is called stationary, otherwise it is nonstationary. Finally, if f; depends linearly
on x(©, ... x(™) the method is called linear, otherwise it is nonlinear.

In the light of these definitions, the methods considered so far are therefore
stationary linear iterative methods of first order. In Section 4.3, examples of
nonstationary linear methods will be provided. [|

128 4 Iterative Methods for Solving Linear Systems
4.2 Linear Iterative Methods

A general technique to devise consistent linear iterative methods is based on
an additive splitting of the matrix A of the form A=P—N, where P and N are
two suitable matrices and P is nonsingular. For reasons that will be clear in
the later sections, P is called preconditioning matrix or preconditioner.
Precisely, given x(?), one can compute x(¥) for k > 1, solving the systems

PxF+) = Nx®) 4 b, k> 0. (4.6)

The iteration matrix of method (4.6) is B = P~IN, while f = P~!'b. Alterna-
tively, (4.6) can be written in the form

x*+1) — x(k) 4 p=1p(k), (4.7)

where
r®) =b — Ax®) (4.8)

denotes the residual vector at step k. Relation (4.7) outlines the fact that a
linear system, with coefficient matrix P, must be solved to update the solution
at step £+ 1. Thus P, besides being nonsingular, ought to be easily invertible,
in order to keep the overall computational cost low. (Notice that, if P were
equal to A and N=0, method (4.7) would converge in one iteration, but at
the same cost of a direct method).

Let us mention two results that ensure convergence of the iteration (4.7),
provided suitable conditions on the splitting of A are fulfilled (for their proof,
we refer to [Hac94]).

Property 4.1 Let A =P —N, with A and P symmetric and positive definite.
If the matriz 2P — A is positive definite, then the iterative method defined in
(4.7) is convergent for any choice of the initial datum x(©) and

p(B) = [[Blla = [[Bllp < 1.

Moreover, the convergence of the iteration is monotone with respect to the
norms || - o and || - s (i.e., [l V]lp < [e® o and e+ D]s <)]s
k=0,1,...).

Property 4.2 Let A =P — N with A being symmetric and positive definite.
If the matriz P +PT — A is positive definite, then P is invertible, the iterative
method defined in (4.7) is monotonically convergent with respect to norm ||-||a
and p(B) < |B|la < 1.

4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods

In this section we consider some classical linear iterative methods.
If the diagonal entries of A are nonzero, we can single out in each equation
the corresponding unknown, obtaining the equivalent linear system

4.2 Linear Iterative Methods 129

1 n
r, = — bi—Zaijxj N 2:1,,n (49)

Qi =
J#i
In the Jacobi method, once an arbitrarily initial guess x(%) has been chosen,
x(**+1) is computed by the formulae

1 - .
$§k+1) = a— bl — Za”xgk) , 1= 1, NN IR (410)
7 i
j#i
This amounts to performing the following splitting for A

P=D,N=D-A=E+F,

where D is the diagonal matrix of the diagonal entries of A, E is the lower
triangular matrix of entries e;; = —a;; if ¢ > j, e;; = 0if ¢ < j, and F is the
upper triangular matrix of entries f;; = —a;; if j >4, fi; =0if j <. As a
consequence, A =D — (E+ F).

The iteration matrix of the Jacobi method is thus given by

B;=D!YE+F)=1-D'A. (4.11)

A generalization of the Jacobi method is the over-relaxation method
(or JOR), in which, having introduced a relaxation parameter w, (4.10) is
replaced by

gD &y Zaijxgk) +(1—w)z® i=1,...,n

i a - i
J#i
The corresponding iteration matrix is
By, =wBy+ (1 —w)L (4.12)
In the form (4.7), the JOR method corresponds to

This method is consistent for any w # 0 and for w = 1 it coincides with the
Jacobi method.

The Gauss-Seidel method differs from the Jacobi method in the fact that
at the k 4+ 1-th step the available values of xgkﬂ) are being used to update
the solution, so that, instead of (4.10), one has

130 4 Iterative Methods for Solving Linear Systems
1 1—1 n
P = — bi — Zaijx(.kﬂ) — Z aijx(.k) ci=1,...,n. (4.13)

? a J J
v j—l j—2+1

This method amounts to performing the following splitting for A
P=D-E,N=F,

and the associated iteration matrix is
Bas = (D —E)7'F. (4.14)

Starting from Gauss-Seidel method, in analogy to what was done for

Jacobi iterations, we introduce the successive over-relaxation method (or SOR
method)

1—1 n

(k+1) _ @ (k+1) (k) (k)
x, = b; —) 0iiT; - Z aigr; | +(1—w)x;”, (4.15)
J=1 J=i+1
for i =1,...,n. The method (4.15) can be written in vector form as
I—wD'E)x* Y = [(1 — w) I+ wD 'Fx* +wD™'b, (4.16)

from which the iteration matrix is
Bw)=(I-wD'E)" (1 —w)I +wD 'F. (4.17)

Multiplying by D both sides of (4.16) and recalling that A = D — (E + F)
yields the following form (4.7) of the SOR method

1
D) () (lD _ E) L)
w

It is consistent for any w # 0 and for w = 1 it coincides with Gauss-Seidel
method. In particular, if w € (0,1) the method is called under-relaxation,
while if w > 1 it is called over-relaxation.

4.2.2 Convergence Results for Jacobi and Gauss-Seidel Methods

There exist special classes of matrices for which it is possible to state a priori
some convergence results for the methods examined in the previous section.
The first result in this direction is the following.

Theorem 4.2 If A is a strictly diagonally dominant matriz by rows, the
Jacobi and Gauss-Seidel methods are convergent.

4.2 Linear Iterative Methods 131

Proof. Let us prove the part of the theorem concerning the Jacobi method, while for
the Gauss-Seidel method we refer to [Axe94]. Since A is strictly diagonally dominant

by rows, |a| > Z?:l la;;| for j # i and i = 1,...,n. As a consequence, [|Bjl|jecc =
n
max Z |aij|/|aii| < 1, so that the Jacobi method is convergent. &
i=1,...,m
J=Lj#1

Theorem 4.3 If A and 2D — A are symmetric and positive definite matrices,
then the Jacobi method is convergent and p(By) = |Bs|la = [|Bs|p.

Proof. The theorem follows from Property 4.1 taking P=D. O

In the case of the JOR method, the assumption on 2D — A can be removed,
yielding the following result.

Theorem 4.4 If A is symmetric positive definite, then the JOR method is
convergent if 0 < w < 2/p(D1A).

Proof. The result immediately follows from (4.12) and noting that A has real
positive eigenvalues. <&

Concerning the Gauss-Seidel method, the following result holds.

Theorem 4.5 If A is symmetric positive definite, the Gauss-Seidel method is
monotonically convergent with respect to the norm || - ||a.

Proof. We can apply Property 4.2 to the matrix P=D—E, upon checking that
P +PT — A is positive definite. Indeed

P+PT—A=2D-E—-F—A=D,

having observed that (D — E)T = D — F. We conclude by noticing that D is positive
definite, since it is the diagonal of A. <&

Finally, if A is tridiagonal (or block tridiagonal), it can be shown that

p(Bas) = p*(By) (4.18)

(see [YouT7l] for the proof). From (4.18) we can conclude that both methods
converge or fail to converge at the same time. In the former case, the Gauss-
Seidel method is more rapidly convergent than the Jacobi method, and the
asymptotic convergence rate of the Gauss-Seidel method is twice than that of
the Jacobi method. In particular, if A is tridiagonal and symmetric positive
definite, Theorem 4.5 implies convergence of the Gauss-Seidel method, and
(4.18) ensures convergence also for the Jacobi method.
Relation (4.18) holds even if A enjoys the following A-property.

Definition 4.3 A consistently ordered matrix M € R™*™ (that is, a matrix
such that aD™'E + o !D~!F, for a # 0, has cigenvalues that do not depend

132 4 Iterative Methods for Solving Linear Systems

on a, where M = D — E — F, D = diag(my1,...,mn,), E and F are strictly
lower and upper triangular matrices, respectively) enjoys the A-property if it
can be partitioned in the 2 x 2 block form

D1 Mu]
M = ~ ,
le Do

where]31 and]32 are diagonal matrices. [

When dealing with general matrices, no a priori conclusions on the conver-
gence properties of the Jacobi and Gauss-Seidel methods can be drawn, as
shown in Example 4.2.

Example 4.2 Consider the 3 x 3 linear systems of the form A;x = b;, where b, is
always taken in such a way that the solution of the system is the unit vector, and
the matrices A; are

3 0 4 3 3 -6
Ay = 742], Ay = 478],

11 2 5 7 -9

4 1 1 7 6 9

As= |2 -9 0], As=| 4 5 —4

0 -8 —6 7 -3 8

It can be checked that the Jacobi method does fail to converge for A (p(Bs) = 1.33),
while the Gauss-Seidel scheme is convergent. Conversely, in the case of Ay, the Jacobi
method is convergent, while the Gauss-Seidel method fails to converge (p(Bgs) =
1.1). In the remaining two cases, the Jacobi method is more slowly convergent than
the Gauss-Seidel method for matrix Az (p(B.y) = 0.44 against p(Bgs) = 0.018), and
the converse is true for Ay (p(By) = 0.64 while p(Bgs) = 0.77). °

We conclude the section with the following result.

Theorem 4.6 If the Jacobi method is convergent, then the JOR method
converges if 0 < w < 1.

Proof. From (4.12) we obtain that the eigenvalues of B, are
P = wAp +1 —w, k=1,...,n,

where A\j are the eigenvalues of B;. Then, recalling the Euler formula for the repre-
sentation of a complex number, we let A\ = rre’?% and get

l? = w?rE + 2wry cos(Bk) (1 — w) + (1 - w)* < (wre +1-w)?,

which is less than 1 if 0 < w < 1. &

4.2.3 Convergence Results for the Relaxation Method

The following result provides a necessary condition on w in order the SOR
method to be convergent.

4.2 Linear Iterative Methods 133

Theorem 4.7 For any w € R we have p(B(w)) > |w — 1|; therefore, the SOR
method fails to converge if w <0 orw > 2.

Proof. If {\;} denote the eigenvalues of the SOR iteration matrix, then

n

I

=1

= ‘det [(1 - w)I+wD_1F” =]1-w|".

Therefore, at least one eigenvalue \; must exist such that |\;| > |1 — w| and thus,
in order for convergence to hold, we must have |1 —w| < 1, thatis0 <w < 2. <

Assuming that A is symmetric and positive definite, the condition 0 < w < 2,
besides being necessary, becomes also sufficient for convergence. Indeed the
following result holds (for the proof, see [Hac94]).

Property 4.3 (Ostrowski) If A is symmetric and positive definite, then
the SOR method is convergent iff 0 < w < 2. Moreover, its convergence is
monotone with respect to || - ||a-

Finally, if A is strictly diagonally dominant by rows, the SOR method con-
verges if 0 < w < 1.

The results above show that the SOR method is more or less rapidly con-
vergent, depending on the choice of the relaxation parameter w. The question
of how to determine the value w,,; for which the convergence rate is the high-
est possible can be given a satisfactory answer only in special cases (see, for
instance, [Axe94], [YouT7l], [Var62] or [Wac66]). Here we limit ourselves to
quoting the following result (whose proof is in [Axe94]).

Property 4.4 If the matriz A enjoys the A-property and if By has real eigen-
values, then the SOR method converges for any choice of x°) iff p(By) < 1
and 0 < w < 2. Moreover,

(4.19)

2
Wopt =
P 1o 20y)

and the corresponding asymptotic convergence factor is

_1=/1-p*(By)

p(B(wopt)) - 1+ m

4.2.4 A priori Forward Analysis

In the previous analysis we have neglected the rounding errors. However, as
shown in the following example (taken from [HW76]), they can dramatically
affect the convergence rate of the iterative method.

134 4 Iterative Methods for Solving Linear Systems

Example 4.3 Let A be a lower bidiagonal matrix of order 100 with entries a;; = 1.5
and a; ;1 = 1, and let b € R be the right-side with b; = 2.5. The exact solution of
the system Ax = b has components x; = 1—(—2/3)". The SOR method with w = 1.5
should be convergent, working in exact arithmetic, since p(B(1.5)) = 0.5 (far below
one). However, running Program 16 with x(*) = fi(x) 4+ eus, which is extremely
close to the exact value, the sequence x(*) diverges and after 100 iterations the
algorithm yields a solution with ||x1°?||, = 10*®. The flaw is due to rounding error
propagation and must not be ascribed to a possible ill-conditioning of the matrix
since Koo (A) >~ 5. °

To account for rounding errors, let us denote by Xx(*+1) the solution (in finite
arithmetic) generated by an iterative method of the form (4.6) after k steps.
Due to rounding errors, X**1) can be regarded as the exact solution to the
problem

PRE+HD) = NP 4 b — ¢, (4.20)
with
Cp = 0P XD — gy

The matrix dPj; accounts for the rounding errors in the solution of (4.6),
while the vector g, includes the errors made in the evaluation of NX(*) 4 b.
From (4.20), we obtain

k
g(h+1) — BhH15(0) 4 ZBjP_l(b — Cr—j)
j=0

and for the absolute error e(*+1) — x — g(k+1)

k
/e\(k-f—l) — Bk+le(0) + ZBJP—ICk_J
7=0

The first term represents the error that is made by the iterative method
in exact arithmetic; if the method is convergent, this error is negligible for
sufficiently large values of k. The second term refers instead to rounding error
propagation; its analysis is quite technical and is carried out, for instance, in
[Hig88] in the case of Jacobi, Gauss-Seidel and SOR methods.

4.2.5 Block Matrices

The methods of the previous sections are also referred to as point (or line)
iterative methods, since they act on single entries of matrix A. It is possible
to devise block versions of the algorithms, provided that D denotes the block
diagonal matrix whose entries are the m x m diagonal blocks of matrix A
(see Section 1.6).

4.2 Linear Iterative Methods 135

The block Jacobi method is obtained taking again P=D and N=D-A. The
method is well-defined only if the diagonal blocks of D are nonsingular. If A
is decomposed in p X p square blocks, the block Jacobi method is

Azz §k+1) ZAZ]X(k), 1= , P,
J?ﬁz

having also decomposed the solution vector and the right side in blocks of
size p, denoted by x; and b;, respectively. As a result, at each step, the block
Jacobi method requires solving p linear systems of matrices A;;. Theorem 4.3 is
still valid, provided that D is substituted by the corresponding block diagonal
matrix.

In a similar manner, the block Gauss-Seidel and block SOR methods can
be introduced.

4.2.6 Symmetric Form of the Gauss-Seidel and SOR Methods

Even if A is a symmetric matrix, the Gauss-Seidel and SOR methods generate
iteration matrices that are not necessarily symmetric. For that, we introduce
in this section a technique that allows for symmetrizing these schemes. The
final aim is to provide an approach for generating symmetric preconditioners
(see Section 4.3.2).

Firstly, let us remark that an analogue of the Gauss-Seidel method can be
constructed, by simply exchanging E with F. The following iteration can thus
be defined, called the backward Gauss-Seidel method

(D — F)x**D = Ex®) 4+ b,

with iteration matrix given by Bggy = (D — F)71E.

The symmetric Gauss-Seidel method is obtained by combining an iteration
of Gauss-Seidel method with an iteration of backward Gauss-Seidel method.
Precisely, the k-th iteration of the symmetric Gauss-Seidel method is

(D —E)x* /2 —px® + b, (D—-F)x*+t) = Ex*+1/2) 4 p,
Eliminating x(**t1/2) the following scheme is obtained
x*) = Bggsx™ + bgas,
Bsgs = (D —F)"'E(D — E)"'F,
bsas = (D —F) YED — E)~! +1I]b. (4.21)
The preconditioning matrix associated with (4.21) is
Psgs = (D —E)D™ (D —F).

The following result can be proved (see [Hac94]).

136 4 Iterative Methods for Solving Linear Systems

Property 4.5 If A is a symmetric positive definite matrixz, the symmetric
Gauss-Seidel method is convergent, and, moreover, Bsas is symmetric posi-
tive definite.

In a similar manner, defining the backward SOR method
(D — wF)x*tY) = [WE + (1 — w)D]x*) + wb,

and combining it with a step of SOR method, the following symmetric SOR
method or SSOR, is obtained

x*+1) = B, (w)x® + by,
where
By(w) = (D = wF) " H(wE + (1 = w)D)(D — wE) "' (wF + (1 — w)D),
b, = w(2 —w)(D - wF)"'D(D — wE) 'b.

The preconditioning matrix of this scheme is

Psson(w) = (lD - E) _“ p-! (lD - F) . (4.22)
w 2 —w w

If A is symmetric and positive definite, the SSOR method is convergent if
0 < w < 2 (see [Hac94] for the proof). Typically, the SSOR method with an
optimal choice of the relaxation parameter converges more slowly than the
corresponding SOR method. However, the value of p(Bs(w)) is less sensitive
to a choice of w around the optimal value (in this respect, see the behavior of
the spectral radii of the two iteration matrices in Figure 4.1). For this reason,
the optimal value of w that is chosen in the case of SSOR method is usually
the same used for the SOR method (for further details, we refer to [You71]).

09+
08¢ SSOR
0.7+
0.6+
pO05+
0.4+
0.3+
0.2+
0.1t

SOR

0 05 1 15 2
()]

Fig. 4.1. Spectral radius of the iteration matrix of SOR and SSOR methods, as a
function of the relaxation parameter w for the matrix tridiag,,(—1,2, —1)

4.2 Linear Iterative Methods 137
4.2.7 Implementation Issues

We provide the programs implementing the Jacobi and Gauss-Seidel methods
in their point form and with relaxation.

In Program 15 the JOR method is implemented (the Jacobi method is
obtained as a special case setting omega = 1). The stopping test monitors the
Euclidean norm of the residual at each iteration, normalized to the value of
the initial residual.

Notice that each component x(i) of the solution vector can be computed
independently; this method can thus be easily parallelized.

Program 15 - jor : JOR method

function [x,iter]=jor(A,b,x0,nmax,tol,omega)

%JOR JOR method

% [X,JITER]=JOR(A,B,X0,NMAX, TOL,OMEGA) attempts to solve the system
% A*X=B with the JOR method. TOL specifies the tolerance of the method.
% NMAX specifies the maximum number of iterations. X0 specifies the initial
% guess. OMEGA is the relaxation parameter. ITER is the iteration number at
% which X is computed.

[n,m]=size(A);

if n "= m, error('Only square systems'); end

iter=0;

r = b-A*x0; rO=norm(r); err=norm(r); x=x0;

while err > tol & iter < nmax

iter = iter + 1;
for i=1:n
s =0;

for j = 1:i-1, s=s+A(i,j)*x(j); end
for j = i4+1:n, s=s+A(i,j)*x(j); end
xnew(i,1)=omega*(b(i)-s)/A(i,i)+(1-omega)*x(i);
end
x=xnew; r=Db-A*x; err=norm(r)/r0;
end
return

Program 16 implements the SOR method. Taking omega=1 yields the
Gauss-Seidel method.
Unlike the Jacobi method, this scheme is fully sequential. However, it can be
efficiently implemented without storing the solution of the previous step, with
a saving of memory storage.

Program 16 - sor : SOR method

function [x,iter]=sor(A,b,x0,nmax,tol,omega)

%SOR SOR method

% [X,ITER]=SOR(A,B,X0,NMAX, TOL,OMEGA) attempts to solve the system
% A*X=B with the SOR method. TOL specifies the tolerance of the method.

138 4 Iterative Methods for Solving Linear Systems

% NMAX specifies the maximum number of iterations. X0 specifies the initial
% guess. OMEGA is the relaxation parameter. ITER is the iteration number at
% which X is computed.
[n,m]=size(A);
if n "= m, error(‘Only square systems'); end
iter=0; r=Db-A*x0; rO=norm(r); err=norm(r); xold=x0;
while err > tol & iter < nmax
iter = iter + 1;
for i=1:n
s=0;
for j = 1:i-1, s=s+A(i,j)*x(j); end
for j = i+1:n, s=s+A(i,j)*xold(j); end
x(i,1)=omega*(b(i)-s)/A(i,i)+(1-omega)*xold(i);
end
xold=x; r=b-A*x; err=norm(r)/r0;
end
return

4.3 Stationary and Nonstationary Iterative Methods

Denote by
Rp=1-P'A

the iteration matrix associated with (4.7). Proceeding as in the case of re-
laxation methods, (4.7) can be generalized introducing a relaxation (or ac-
celeration) parameter «. This leads to the following stationary Richardson
method

x*+D) = x(®) 4 op=ip) k> 0. (4.23)

More generally, allowing « to depend on the iteration index, the nonstationary
Richardson method or semi-iterative method is given by

x*+HD) — x®) P~ 1r® k>0, (4.24)
The iteration matrix at the k-th step for (4.24) (depending on k) is
Ro, =1—azP 1A,

with a; = a in the stationary case. If P = I, the family of methods (4.24)
will be called nonpreconditioned. The Jacobi and Gauss-Seidel methods can
be regarded as stationary Richardson methods with P =D and P =D — E,
respectively (and o =1 in both cases).

We can rewrite (4.24) (and, thus, also (4.23)) in a form of greater interest
for computation. Letting z(*) = P~1r() (the so-called preconditioned resid-
ual), we get x(F+1) = x(®) 1 q z2(F) and r(F+1) = b— AxF+1) = (k) — o, Az(*),

4.3 Stationary and Nonstationary Iterative Methods 139

To summarize, a nonstationary Richardson method requires at each k + 1-th
step the following operations:

solve the linear system Pz(®) = r(F)

compute the acceleration parameter oy, ()
4.25
update the solution x*+1) = x(k) 4 o,z

update the residual r#+1) = r(F) — o, Az(*)

4.3.1 Convergence Analysis of the Richardson Method

Let us first consider the stationary Richardson methods for which aj = « for
k > 0. The following convergence result holds.

Theorem 4.8 For any nonsingular matriz P, the stationary Richardson
method (4.23) is convergent iff

2Re)\i

—>1Vi=1,... .
NONE > 1Vi s, (4.26)

where \; € C are the eigenvalues of P7TA.

Proof. Let us apply Theorem 4.1 to the iteration matrix Ra = I — aP 'A. The
condition |1 — a);| < 1 for i = 1,...,n yields the inequality

(1 —aReX;)? + &*(ImN\;)* < 1,

from which (4.26) immediately follows. &

Let us notice that, if the sign of the real parts of the eigenvalues of P~1A is
not constant, the stationary Richardson method cannot converge.

More specific results can be obtained provided that suitable assumptions are
made on the spectrum of P71A.

Theorem 4.9 Assume that P is a nonsingular matriz and that P~'A has
positive real eigenvalues, ordered in such a way that Ay > Ao > ... > A\, > 0.
Then, the stationary Richardson method (4.23) is convergent iff 0 < a < 2/A1.
Moreover, letting

2

P 4.27
PV 420

the spectral radius of the iteration matriz Ry is minimum if o = qope, with

Y.

. 4.2
A1+ A\, (8)

Popt = Hlain [p(ROC)]

140 4 Iterative Methods for Solving Linear Systems

A
,’I 1— Oé)\1|
/I I,'l p = 1
: 1 = adg
Popt T----\--\--- : \
: I |1 —a\,|
1 a‘ t 9 1 N =
NN An

Fig. 4.2. Spectral radius of R, as a function of the eigenvalues of P~*A

Proof. The eigenvalues of R, are given by A\i(Ra) = 1 — a\;, so that (4.23) is
convergent iff |\;j(Rq)| < 1 for ¢ = 1,...,n, that is, if 0 < a < 2/\;. It follows
(see Figure 4.2) that p(Rq) is minimum when 1 — a), = aX; — 1, that is, for
a = 2/(MA + An), which furnishes the desired value for a,p:. By substitution, the
desired value of p,pt is obtained. <&

If P~1A is symmetric positive definite, it can be shown that the convergence

of the Richardson method is monotone with respect to either || - || and || - ||a.
In such a case, using (4.28), we can also relate pop: to Ko(P71A) as follows
—1AY —1

Port = T, (P—1A) + 17 "' T Ky(P1A) + 1

The choice of a suitable preconditioner P is, therefore, of paramount impor-
tance for improving the convergence of a Richardson method. Of course, such
a choice should also account for the need of keeping the computational effort
as low as possible. In Section 4.3.2, some preconditioners of common use in
practice will be described.

Corollary 1 Assume that A is a symmetric positive definite matrixz with
eigenvalues Ay > Ao > ... > \,. Then, if 0 < a < 2/\1, the nonprecon-
ditioned stationary Richardson method is convergent and

le® Vs < p(Ra)lle®], & =0. (4.30)

The same result holds for the preconditioned Richardson method, provided that
the matrices P, A and P~1A are symmetric positive definite.

Proof. The convergence is a consequence of Theorem 4.8. Moreover, we notice that

le® D a = [Rae®|la = [|AY*Rae® 2 < [AV2RaA 2|2 AV 2e®)],.

4.3 Stationary and Nonstationary Iterative Methods 141

The matrix R, is symmetric positive definite and is similar to AYZRLATY2,

Therefore,

IAY?RaA™Y2||2 = p(Ra).
The result (4.30) follows by noting that [|A/2e® || = ||e®||a. A similar proof can
be carried out in the preconditioned case, provided we replace A with P~!A. &

Finally, the inequality (4.30) holds even if only P and A are symmetric positive
definite (for the proof, see [QV94], Chapter 2).

4.3.2 Preconditioning Matrices

All the methods introduced in the previous sections can be cast in the form
(4.2), so that they can be regarded as being methods for solving the system

I-B)x=f=P 'b.

On the other hand, since B=P~IN, system (3.2) can be equivalently refor-
mulated as

P 'Ax =P 'b. (4.31)

The latter is the preconditioned system, being P the preconditioning matriz or
left preconditioner. Right and centered preconditioners can be introduced as
well, if system (3.2) is transformed, respectively, as

AP 'y = b,y = Px,
or
P 'APL'y =P 'b, y = Prx.

There are point preconditioners and block preconditioners, depending on
whether they are applied to the single entries of A or to the blocks of a parti-
tion of A. The iterative methods considered so far correspond to fixed-point
iterations on a left-preconditioned system. As stressed by (4.25), computing
the inverse of P is not mandatory; actually, the role of P is to “precondition”
the residual r(*) through the solution of the additional system Pz*) = r(¥),

Since the preconditioner acts on the spectral radius of the iteration matrix,
it would be useful to pick up, for a given linear system, an optimal precondi-
tioner, i.e., a preconditioner which is able to make the number of iterations
required for convergence independent of the size of the system. Notice that
the choice P=A is optimal but, trivially, “inefficient”; some alternatives of
greater computational interest will be examined below.

There is not a general roadmap to devise optimal preconditioners. How-
ever, an established “rule of thumb” is that P is a good preconditioner for
A if P~1A is near to being a normal matrix and if its eigenvalues are clus-
tered within a sufficiently small region of the complex field. The choice of a

142 4 Iterative Methods for Solving Linear Systems

preconditioner must also be guided by practical considerations, noticeably, its
computational cost and its memory requirements.

Preconditioners can be divided into two main categories: algebraic and
functional preconditioners, the difference being that the algebraic precon-
ditioners are independent of the problem that originated the system to be
solved, and are actually constructed via algebraic procedures, while the func-
tional preconditioners take advantage of the knowledge of the problem and
are constructed as a function of it. In addition to the preconditioners already
introduced in Section 4.2.6, we give a description of other algebraic precondi-
tioners of common use.

1. Diagonal preconditioners: choosing P as the diagonal of A is generally
effective if A is symmetric positive definite. A usual choice in the nonsym-
metric case is to set

1/2
n

. 2
Pii = g Q;j

j=1

Block diagonal preconditioners can be constructed in a similar manner.
We remark that devising an optimal diagonal preconditioner is far from
being trivial, as previously noticed in Section 3.12.1 when dealing with
the scaling of a matrix.

2. Incomplete LU factorization (shortly ILU) and Incomplete Cholesky fac-
torization (shortly IC).
An incomplete factorization of A is a process that computes P = L;,,U;,,,
where L;,, is a lower triangular matrix and U;, is an upper triangular
matrix. These matrices are approximations of the exact matrices L, U of
the LU factorization of A and are chosen in such a way that the residual
matrix R = A — L;,,U;,, satisfies some prescribed requirements, such as
having zero entries in specified locations.
For a given matrix M, the L-part (U-part) of M will mean henceforth
the lower (upper) triangular part of M. Moreover, we assume that the
factorization process can be carried out without resorting to pivoting.
The basic approach to incomplete factorization, consists of requiring the
approximate factors L;,, and Uj;,, to have the same sparsity pattern as the
L-part and U-part of A, respectively. A general algorithm for constructing

an incomplete factorization is to perform Gauss elimination as follows:
at each step k, compute m;, = ag,]z)/a,i];) only if a; # 0 for i = k +
1,...,n. Then, compute for j =k +1,....,n agfﬂ) only if a;; # 0. This
algorithm is implemented in Program 17, where the matrices L;,, and U;,
are progressively overwritten onto the L-part and U-part of A.

Program 17 - basiclLU : Incomplete LU factorization

function [A] = basiclLU(A)
%BASICILU Incomplete LU factorization.

