
Cholesky Decomposition

Cholesky decomposition is a special version of LU decomposition tailored to handle symmet-
ric matrices more efficiently.

For a symmetric matrix A, by definition, aij = aji. LU decomposition is not efficient enough
for symmetric matrices. The computational load can be halved using Cholesky decomposition.

Using the fact that A is symmetric, write

A = LL′

where L is a lower triangular matrix. That is,

L =




l11 0 0 . . . 0
l21 l22 0 . . . 0
...

ln1 ln2 nn3 . . . lnn




(1)

Note that the diagonal elements of L are not 1s as in the case of LU decomposition.

With Cholesky decomposition, the elements of L are evaluated as follows:

lkk =

√√√√√akk −
k−1∑
j=1

l2kj k = 1, 2, . . . , n (2)

lki =
1
lii


aki −

i−1∑
j

lijlkj


 i = 1, 2, . . . , k − 1 (3)

where the first subscript is the row index and the second one is the column index.

Cholesky decomposition is evaluated column by column (starting from the first column) and,
in each row, the elements are evaluated from top to bottom. That is, in each column the di-
agonal element is evaluated first using (2) (the elements above the diagonal are zero) and then
the other elements in the same row are evaluated next using (3). This is carried out for each
column starting from the first one.

Note that if the value within the square root in (2) is negative, Cholesky decomposition will
fail. However, this will not happen for positive semidefinite matrices, which are encountered
commonly in many engineering systems (e.g., circuits, covariance matrix). Thus, Cholesky de-
composition is a good way to test for the positive semidefiniteness of symmetric matrices.

Pseudocode for Cholesky decomposition is given below:

for k = 1 : n
% evaluate off-diagonal terms
for i = 1 : k-1

s = 0

1

for j = 1 : i -1
s = s + aij * akj

end
aki = (aki - s) / aii

end

% evaluate diagonal term
s = 0
for j = 1 : k-1

s = s + (akj)^2
end
akk = (akk - s)^(0.5)

end

Steps for solving Ax = b, where A is symmetric, using Cholesky decomposition is given
below.

1. Factorize A in to A = LL′.

2. Solve for x

(a) Forward substitution:
Solve for d using Ld = b

(b) Back substitution:
Solve for x using L′x = d

Iterative Methods for Solving a Set of Linear Equations

Gauss-Seidel iteration

In some cases, the straightforward LU or Cholesky decomposition may become inefficient.
Then, the alternative is to use some iterative technique that starts with an initial guess and
iterates through the solution until convergence. One such method is Gauss-Seidel iteration.

We’ll illustrate the method using a set of three equations, which are given by:

a11x1 + a12x2 + a13x3 = b1 (4)
a21x1 + a22x2 + a23x3 = b2 (5)
a31x1 + a32x2 + a33x3 = b3 (6)

From (4), we can solve for x1 in terms of x2 and x3 as

x1 =
b1 − a12x2 − a13x3

a11
(7)

Similarly, x2 and x3 can be solved in terms of the others as

x2 =
b2 − a21x1 − a23x3

a22
(8)

x3 =
b3 − a31x1 − a32x2

a33
(9)

2

from (5) and (6), respectively.

Then, x1, x2 and x3 can be solved for using the following steps:

1. Start with an initial guess for x2 and x3 (for example, x2 = x3 = 0).

2. Update x1 using (7) based on the current values of x2 and x3.

3. Update x2 using (8) based on the current value of x3 and the value of x1 found from Step
2.

4. Update x3 using (9) based on the value of x1 found from Step 2 and the value of x2 found
from Step 3.

5. Check for convergence and if not converged, go to Step 2.

Convergence can be tested using the relative error between successive iterations. That is,

εi =

∣∣∣∣∣
xnew

i − xold
i

xold
i

∣∣∣∣∣ × 100% < εt i = 1, 2, . . . , n (10)

where εt is a suitable threshold such as, for example, 1%. Gauss-Seidel iteration can be termi-
nated if each xi satisfies the convergence criterion.

As with any iterative technique, the question is whether Gauss-Seidel will always converge.
It can be shown that Gauss-Seidel will converge if

|aii| <
∑

j=1,j �=i

n|aij | (11)

That is, the magnitude of the diagonal element in each row must be greater than the sum of
the magnitude of the other terms in the same row. The system must be diagonally dominant.

Note that the above condition is sufficient, but not necessary. That is, while diagonally
dominant systems will always converge, the converse is not always true.

Convergence depends on the order of evaluating xi. Then, if the original system is not diag-
onally dominant, rows have to be rearranged.

Example: Using Gauss-Seidel iteration, solve

11x1 + 13x2 = 286
11x1 − 9x2 = 99

This is not diagonally dominant. Rearrange the above equations as

11x1 − 9x2 = 99
11x1 + 13x2 = 286

which is diagonally dominant.

See Figure 1 which illustrates an example where the order of execution matters for conver-
gence (the evaluation in sub-figure a converges; but, if the evaluation order is reversed as in
sub-figure b, the solution diverges).
Resources:

3

Figure 1: Convergence and divergence of Gauss-Seidel method depending on the order of eval-
uation

1. Steven Chapra and Raymond Canale, Numerical Methods for Engineers, Fourth Edition,
McGraw-Hill, 2002 (see Sections 11.1-11.2).

2. http://ikpe1101.ikp.kfa-juelich.de/briefbook_data_analysis/node33.html

3. http://ada.home.cern.ch/rkb/AN16pp/node156.html

4

