Chapter 4

The Richardson Iteration

Definition 4.1 Richardson iteration. Let $\mathbf{x}^{(0)} \in \mathbb{R}^{n}$ be a given initial iterate. The Richardson ${ }^{1}$ iteration for computing a sequence of vectors $\mathbf{x}^{(k)} \in \mathbb{R}^{n}, k=$ $0,1,2, \ldots$, has the form

$$
\begin{equation*}
\mathbf{r}^{(k)}=\mathbf{b}-A \mathbf{x}^{(k)}, \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha_{k} \mathbf{r}^{(k)} \tag{4.1}
\end{equation*}
$$

with appropriately chosen numbers $\alpha_{k} \in \mathbb{R}$.
Definition 4.2 Co-domain of a matrix. The set

$$
\mathcal{R}(A)=\left\{\frac{\mathbf{y}^{*} A \mathbf{y}}{\mathbf{y}^{*} \mathbf{y}}: \mathbf{y} \in \mathbb{C}^{n}, \mathbf{y} \neq \mathbf{0}\right\} \subset \mathbb{C}
$$

is called co-domain of A.
Remark 4.3 On the co-domain of a matrix. The co-domain of A is the co-domain of the unit sphere of \mathbb{C}^{n} since

$$
\frac{\mathbf{y}^{*} A \mathbf{y}}{\mathbf{y}^{*} \mathbf{y}}=\frac{\mathbf{y}^{*} A \mathbf{y}}{\left\|\mathbf{y}^{*}\right\|_{2}\|\mathbf{y}\|_{2}}=\underbrace{\frac{\mathbf{y}^{*}}{\left\|\mathbf{y}^{*}\right\|_{2}}}_{\|\cdot\|_{2}=1} A \underbrace{\frac{\mathbf{y}}{\|\mathbf{y}\|_{2}}}_{\|\cdot\|_{2}=1}
$$

The unit sphere is a compact set (bounded and closed) and the mapping y \mapsto $\mathbf{y}^{*} A \mathbf{y} / \mathbf{y}^{*} \mathbf{y}$ is continuous. It follows that $\mathcal{R}(A)$ is also a compact set.

Lemma 4.4 Co-domain of the inverse matrix. Let $A \in \mathbb{R}^{n \times n}$ with $\mathcal{R}(A) \subset$ $\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)>0\}$, i.e., the co-domain of A is a subset of the right half of the complex plane. Then

$$
\mathcal{R}\left(A^{-1}\right) \subset\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)>0\} .
$$

Proof: From the assumption it follows that A is non-singular. Otherwise, there would be a vector $\mathbf{z} \in \operatorname{ker}(A), \mathbf{z} \neq \mathbf{0}$, and

$$
\operatorname{Re}(\frac{\mathbf{z}^{*} \overbrace{A \mathbf{z}}^{=0}}{\mathbf{z}^{*} \mathbf{z}})=\operatorname{Re}(0)=0 .
$$

This contradicts the assumption on $\mathcal{R}(A)$.

[^0]Let $\mathbf{y} \in \mathbb{C}^{n}, \mathbf{y} \neq \mathbf{0}$, be arbitrary and $\mathbf{z}=A^{-1} \mathbf{y} \neq \mathbf{0}$. Hence, \mathbf{z} is also an arbitrary vector. One has

$$
\begin{aligned}
\operatorname{Re}(\frac{\mathbf{y}^{*} A^{-1} \mathbf{y}}{\underbrace{\mathbf{y}^{*} \mathbf{y}}_{\in \mathbb{R}}}) & =\frac{1}{\|\mathbf{y}\|_{2}^{2}} \operatorname{Re}\left(\mathbf{y}^{*} A^{-1} \mathbf{y}\right)=\frac{1}{\|A \mathbf{z}\|_{2}^{2}} \operatorname{Re}((A \mathbf{z})^{*} \underbrace{A^{-1} A}_{=I} \mathbf{z}) \\
& =\frac{1}{\|A \mathbf{z}\|_{2}^{2}} \operatorname{Re}\left(\mathbf{z}^{*} A^{*} \mathbf{z}\right)=\frac{1}{\|A \mathbf{z}\|_{2}^{2}} \operatorname{Re}\left(\left(\mathbf{z}^{*} A^{*} \mathbf{z}\right)^{*}\right)=\frac{1}{\|A \mathbf{z}\|_{2}^{2}} \operatorname{Re}\left(\mathbf{z}^{*} A \mathbf{z}\right) \\
& =\frac{\|\mathbf{z}\|_{2}^{2}}{\|A \mathbf{z}\|_{2}^{2}} \operatorname{Re}\left(\frac{\mathbf{z}^{*} A \mathbf{z}}{\mathbf{z}^{*} \mathbf{z}}\right) \geq \frac{1}{\|A\|_{2}^{2}} \operatorname{Re}\left(\frac{\mathbf{z}^{*} A \mathbf{z}}{\mathbf{z}^{*} \mathbf{z}}\right)>0
\end{aligned}
$$

where $\|A \mathbf{z}\|_{2} \leq\|A\|_{2}\|\mathbf{z}\|_{2}$ has been used.
Theorem 4.5 Convergence of the Richardson iteration. Let $A \in \mathbb{R}^{n \times n}$ with $\mathcal{R}(A) \subset\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)>0\}$. Then the Richardson iteration (4.1) converges to the solution of the linear system $A \mathbf{x}=\mathbf{b}$ for every initial iterate if $\alpha_{k}=\alpha, k=$ $0,1,2, \ldots$, with

$$
0<\alpha<\min \left\{\beta=\operatorname{Re}(\lambda), \lambda \in \mathcal{R}\left(A^{-1}\right)\right\}
$$

Proof: Note that $\mathcal{R}\left(A^{-1}\right)$ is a compact set such that the minimum exists. Let \mathbf{x} be the solution of (1.1). It will be shown that the error $\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\|_{2}$ decreases strongly monotonically and the rate of decrease is strictly lower than one. Using $\mathbf{b}=A \mathbf{x}$ and (4.1), one has the recursion

$$
\begin{aligned}
\mathbf{x}-\mathbf{x}^{(k+1)} & =\mathbf{x}-\mathbf{x}^{(k)}-\alpha \mathbf{r}^{(k)}=\mathbf{x}-\mathbf{x}^{(k)}-\alpha\left(\mathbf{b}-A \mathbf{x}^{(k)}\right) \\
& =\mathbf{x}-\mathbf{x}^{(k)}-\alpha A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)
\end{aligned}
$$

Hence,

$$
\begin{align*}
\left\|\mathbf{x}-\mathbf{x}^{(k+1)}\right\|_{2}^{2} & =\left(\mathbf{x}-\mathbf{x}^{(k)}-\alpha A\left(\mathbf{x}-\mathbf{x}^{(k)}\right), \mathbf{x}-\mathbf{x}^{(k)}-\alpha A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)\right) \tag{4.2}\\
& =\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\|_{2}^{2}-2 \alpha\left(\mathbf{x}-\mathbf{x}^{(k)}\right)^{T} A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)+\alpha^{2}\left\|A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)\right\|_{2}^{2}
\end{align*}
$$

Denoting $\mathbf{y}=A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)$, one obtains

$$
\begin{aligned}
\frac{\left(\mathbf{x}-\mathbf{x}^{(k)}\right)^{T} A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)}{\left\|A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)\right\|_{2}^{2}} & =\frac{\left(\mathbf{x}-\mathbf{x}^{(k)}\right)^{T} A^{T} A^{-T} A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)}{\left\|A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)\right\|_{2}^{2}}=\frac{\overbrace{\mathbf{y}^{T} A^{-T} \mathbf{y}}^{\in \mathbb{R}}}{\mathbf{y}^{T} \mathbf{y}} \\
& =\frac{\mathbf{y}^{T} A^{-1} \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}} \geq \min \left\{\operatorname{Re}(\lambda): \lambda \in \mathcal{R}\left(A^{-1}\right)\right\}>\alpha \\
& \Longleftrightarrow{ }^{2}\left\|A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)\right\|_{2}^{2}
\end{aligned}
$$

Applying this estimate to the last term of (4.2) gives

$$
\begin{align*}
\left\|\mathbf{x}-\mathbf{x}^{(k+1)}\right\|_{2}^{2} & \leq\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\|_{2}^{2}-\alpha\left(\mathbf{x}-\mathbf{x}^{(k)}\right)^{T} A\left(\mathbf{x}-\mathbf{x}^{(k)}\right) \\
& =\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\|_{2}^{2}\left(1-\alpha \frac{\left(\mathbf{x}-\mathbf{x}^{(k)}\right)^{T} A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)}{\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\|_{2}^{2}}\right) \tag{4.3}
\end{align*}
$$

Since $\mathcal{R}(A)$ is compact, there is a $\varepsilon>0$ such that $\operatorname{Re}(\lambda) \geq \varepsilon$ for all $\lambda \in \mathcal{R}(A)$ (there is no sequence that can converge to the imaginary axis). Hence

$$
\frac{\left(\mathbf{x}-\mathbf{x}^{(k)}\right)^{T} A\left(\mathbf{x}-\mathbf{x}^{(k)}\right)}{\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\|_{2}^{2}} \geq \varepsilon
$$

Choose ε such that $\alpha \varepsilon \leq 1$, then it follows from (4.3) that

$$
\left\|\mathrm{x}-\mathbf{x}^{(k+1)}\right\|_{2}^{2} \leq\left\|\mathrm{x}-\mathrm{x}^{(k)}\right\|_{2}^{2}(1-\alpha \varepsilon)=: q^{2}\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\|_{2}^{2}
$$

with $0<q<1$ independent of k. One obtains by induction

$$
\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\|_{2} \leq q^{k}\left\|\mathbf{x}-\mathbf{x}^{(0)}\right\|_{2}
$$

such that $\mathbf{x}^{(k)} \rightarrow \mathbf{x}$ as $k \rightarrow \infty$.
Remark 4.6 Choice of α for s.p.d. matrices. Let A be symmetric and positive definite. Using Rayleigh's coefficient (2.3), one gets

$$
\begin{aligned}
& \frac{\operatorname{Re}\left(\mathbf{y}^{*} A^{-1} \mathbf{y}\right)}{\|\mathbf{y}\|_{2}^{2}} \\
& \quad=\frac{1}{\|\mathbf{y}\|_{2}^{2}}\left((\operatorname{Re}(\mathbf{y}))^{T} A^{-1} \operatorname{Re}(\mathbf{y})+(\operatorname{Im}(\mathbf{y}))^{T} A^{-1} \operatorname{Im}(\mathbf{y})\right) \\
& =\frac{1}{\|\mathbf{y}\|_{2}^{2}}\left(\|\operatorname{Re}(\mathbf{y})\|_{2}^{2} \frac{(\operatorname{Re}(\mathbf{y}))^{T} A^{-1} \operatorname{Re}(\mathbf{y})}{\|\operatorname{Re}(\mathbf{y})\|_{2}^{2}}+\|\operatorname{Im}(\mathbf{y})\|_{2}^{2} \frac{(\operatorname{Im}(\mathbf{y}))^{T} A^{-1} \operatorname{Im}(\mathbf{y})}{\|\operatorname{Im}(\mathbf{y})\|_{2}^{2}}\right) \\
& \geq \frac{1}{\|\mathbf{y}\|_{2}^{2}}\left(\|\operatorname{Re}(\mathbf{y})\|_{2}^{2} \lambda_{\min }\left(A^{-1}\right)+\|\operatorname{Im}(\mathbf{y})\|_{2}^{2} \lambda_{\min }\left(A^{-1}\right)\right) \\
& \quad=\lambda_{\min }\left(A^{-1}\right)=\frac{1}{\lambda_{\max }(A)}=\frac{1}{\rho(A)} .
\end{aligned}
$$

That means, the choice $\alpha<1 / \rho(A)$ guarantees the convergence of the Richardson method.

Remark 4.7 Residual minimzation for choosing α_{k}. One possibility to choose α_{k} in practice consists in the minimization of the norm of the residual

$$
\begin{aligned}
\left\|\mathbf{r}^{(k+1)}\right\|_{2}^{2} & =\left\|\mathbf{b}-A \mathbf{x}^{(k+1)}\right\|_{2}^{2}=\left\|\mathbf{b}-A \mathbf{x}^{(k)}-\alpha_{k} A \mathbf{r}^{(k)}\right\|_{2}^{2}=\left\|\mathbf{r}^{(k)}-\alpha_{k} A \mathbf{r}^{(k)}\right\|_{2}^{2} \\
& =\left\|\mathbf{r}^{(k)}\right\|_{2}^{2}-2 \alpha_{k} \mathbf{r}^{(k)^{T}} A r^{(k)}+\alpha_{k}^{2}\left\|A \mathbf{r}^{(k)}\right\|_{2}^{2}
\end{aligned}
$$

The necessary condition for a minimum

$$
\frac{d}{d \alpha_{k}}\left\|\mathbf{r}^{(k+1)}\right\|_{2}^{2}=0
$$

gives

$$
\begin{equation*}
\alpha_{k}=\frac{\mathbf{r}^{(k)^{T}} A \mathbf{r}^{(k)}}{\left\|A \mathbf{r}^{(k)}\right\|_{2}^{2}} \tag{4.4}
\end{equation*}
$$

Since

$$
\frac{d^{2}}{d \alpha_{k}^{2}}\left\|\mathbf{r}^{(k+1)}\right\|_{2}^{2}=2\left\|A \mathbf{r}^{(k)}\right\|_{2}^{2}>0
$$

if $\mathbf{r}^{(k)} \neq \mathbf{0}$, one obtains in fact a minimum.
Remark 4.8 Spaces spanned by the iterates. It is by (4.1)

$$
\begin{aligned}
& \mathbf{x}^{(1)} \in \mathbf{x}^{(0)}+\operatorname{span}\left\{\mathbf{r}^{(0)}\right\}, \\
& \mathbf{x}^{(2)} \in \mathbf{x}^{(1)}+\operatorname{span}\left\{\mathbf{r}^{(1)}\right\} \in \mathbf{x}^{(0)}+\operatorname{span}\left\{\mathbf{r}^{(0)}, \mathbf{r}^{(1)}\right\} .
\end{aligned}
$$

It holds

$$
\mathbf{r}^{(1)}=\mathbf{b}-A \mathbf{x}^{(1)}=\mathbf{b}-A \mathbf{x}^{(0)}-\alpha_{0} A \mathbf{r}^{(0)}=\mathbf{r}^{(0)}-\alpha_{0} A \mathbf{r}^{(0)}
$$

and consequently

$$
\mathbf{x}^{(2)} \in \mathbf{x}^{(0)}+\operatorname{span}\left\{\mathbf{r}^{(0)}, A \mathbf{r}^{(0)}\right\}
$$

One obtains by induction

$$
\mathbf{x}^{(k)} \in \mathbf{x}^{(0)}+\operatorname{span}\left\{\mathbf{r}^{(0)}, A \mathbf{r}^{(0)}, \ldots, A^{k-1} \mathbf{r}^{(0)}\right\}
$$

Definition 4.9 Krylov subspace. Let $\mathbf{q} \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$. Then, the space

$$
K_{m}(\mathbf{q}, A):=\operatorname{span}\left\{\mathbf{q}, A \mathbf{q}, \ldots, A^{k-1} \mathbf{q}\right\}
$$

is called the Krylov ${ }^{2}$ subspace of order m which is spanned by \mathbf{q} and A.
Remark 4.10 Next goal. It holds $\mathbf{x}^{(k)} \in \mathbf{x}^{(0)}+K_{k}\left(\mathbf{r}^{(0)}, A\right)$. In the following, Richardson's method will be generalized by constructing the iterates $\mathbf{x}^{(k)}$ in this manifold with respect to certain optimality criteria.

[^1]
[^0]: ${ }^{1}$ Lewis Fry Richardson (1881-1953)

[^1]: ${ }^{2}$ Krylov

