
Chapter 4

The Richardson Iteration

Definition 4.1 Richardson iteration. Let x(0) ∈ R
n be a given initial iterate.

The Richardson1 iteration for computing a sequence of vectors x(k) ∈ R
n, k =

0, 1, 2, . . ., has the form

r(k) = b−Ax(k), x(k+1) = x(k) + αkr
(k) (4.1)

with appropriately chosen numbers αk ∈ R. 2

Definition 4.2 Co-domain of a matrix. The set

R (A) =

{
y∗Ay

y∗y
: y ∈ C

n,y 6= 0

}

⊂ C

is called co-domain of A. 2

Remark 4.3 On the co-domain of a matrix. The co-domain of A is the co-domain
of the unit sphere of Cn since

y∗Ay

y∗y
=

y∗Ay

‖y∗‖2 ‖y‖2
=

y∗

‖y∗‖2
︸ ︷︷ ︸

‖·‖
2
=1

A
y

‖y‖2
︸ ︷︷ ︸

‖·‖
2
=1

.

The unit sphere is a compact set (bounded and closed) and the mapping y 7→
y∗Ay/y∗y is continuous. It follows that R (A) is also a compact set. 2

Lemma 4.4 Co-domain of the inverse matrix. Let A ∈ R
n×n with R (A) ⊂

{λ ∈ C : Re(λ) > 0}, i.e., the co-domain of A is a subset of the right half of the

complex plane. Then

R
(
A−1

)
⊂ {λ ∈ C : Re(λ) > 0} .

Proof: From the assumption it follows that A is non-singular. Otherwise, there would
be a vector z ∈ ker(A), z 6= 0, and

Re

(

z∗

=0
︷︸︸︷

Az

z∗z

)

= Re (0) = 0.

This contradicts the assumption on R(A).

1Lewis Fry Richardson (1881 – 1953)
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Let y ∈ C
n, y 6= 0, be arbitrary and z = A−1y 6= 0. Hence, z is also an arbitrary

vector. One has

Re

(

y∗A−1y

y
∗
y

︸︷︷︸

∈R

)

=
1

‖y‖22
Re
(
y
∗
A

−1
y
)
=

1

‖Az‖22
Re((Az)∗ A−1

A
︸ ︷︷ ︸

=I

z)

=
1

‖Az‖22
Re (z∗A∗

z) =
1

‖Az‖22
Re
(
(z∗A∗

z)
∗
)
=

1

‖Az‖22
Re (z∗Az)

=
‖z‖22
‖Az‖22

Re

(
z∗Az

z∗z

)

≥
1

‖A‖22
Re

(
z∗Az

z∗z

)

> 0,

where ‖Az‖2 ≤ ‖A‖2 ‖z‖2 has been used.

Theorem 4.5 Convergence of the Richardson iteration. Let A ∈ R
n×n with

R (A) ⊂ {λ ∈ C : Re(λ) > 0}. Then the Richardson iteration (4.1) converges to

the solution of the linear system Ax = b for every initial iterate if αk = α, k =
0, 1, 2, . . ., with

0 < α < min{β = Re (λ) , λ ∈ R
(
A−1

)
}.

Proof: Note that R
(
A−1

)
is a compact set such that the minimum exists. Let x

be the solution of (1.1). It will be shown that the error
∥
∥
∥x− x(k)

∥
∥
∥
2
decreases strongly

monotonically and the rate of decrease is strictly lower than one. Using b = Ax and (4.1),
one has the recursion

x− x
(k+1) = x− x

(k) − αr
(k) = x− x

(k) − α
(

b−Ax
(k)
)

= x− x
(k) − αA

(

x− x
(k)
)

.

Hence,
∥
∥
∥x− x

(k+1)
∥
∥
∥

2

2
=

(

x− x
(k) − αA

(

x− x
(k)
)

,x− x
(k) − αA

(

x− x
(k)
))

(4.2)

=
∥
∥
∥x− x

(k)
∥
∥
∥

2

2
− 2α

(

x− x
(k)
)T

A
(

x− x
(k)
)

+ α
2
∥
∥
∥A
(

x− x
(k)
)∥
∥
∥

2

2
.

Denoting y = A
(

x− x(k)
)

, one obtains

(

x− x(k)
)T

A
(

x− x(k)
)

‖A (x− x(k))‖
2
2

=

(

x− x(k)
)T

ATA−TA
(

x− x(k)
)

‖A (x− x(k))‖
2
2

=

∈R

︷ ︸︸ ︷

y
T
A

−T
y

yTy

=
yTA−1y

yTy
≥ min

{
Re(λ) : λ ∈ R

(
A

−1)}
> α,

⇐⇒

α
2
∥
∥
∥A
(

x− x
(k)
)∥
∥
∥

2

2
< α

(

x− x
(k)
)T

A
(

x− x
(k)
)

.

Applying this estimate to the last term of (4.2) gives

∥
∥
∥x− x

(k+1)
∥
∥
∥

2

2
≤

∥
∥
∥x− x

(k)
∥
∥
∥

2

2
− α

(

x− x
(k)
)T

A
(

x− x
(k)
)

=
∥
∥
∥x− x

(k)
∥
∥
∥

2

2




1− α

(

x− x(k)
)T

A
(

x− x(k)
)

‖x− x(k)‖
2
2




 . (4.3)

Since R (A) is compact, there is a ε > 0 such that Re (λ) ≥ ε for all λ ∈ R (A) (there is
no sequence that can converge to the imaginary axis). Hence

(

x− x(k)
)T

A
(

x− x(k)
)

‖x− x(k)‖
2
2

≥ ε.
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Choose ε such that αε ≤ 1, then it follows from (4.3) that

∥
∥
∥x− x

(k+1)
∥
∥
∥

2

2
≤
∥
∥
∥x− x

(k)
∥
∥
∥

2

2
(1− αε) =: q2

∥
∥
∥x− x

(k)
∥
∥
∥

2

2

with 0 < q < 1 independent of k. One obtains by induction
∥
∥
∥x− x

(k)
∥
∥
∥
2
≤ q

k

∥
∥
∥x− x

(0)
∥
∥
∥
2

such that x(k) → x as k → ∞.

Remark 4.6 Choice of α for s.p.d. matrices. Let A be symmetric and positive
definite. Using Rayleigh’s coefficient (2.3), one gets

Re
(
y∗A−1y

)

‖y‖
2
2

=
1

‖y‖
2
2

(

(Re (y))
T
A−1Re (y) + (Im (y))

T
A−1Im (y)

)

=
1

‖y‖
2
2

(

‖Re (y)‖
2
2

(Re (y))
T
A−1Re (y)

‖Re (y)‖
2
2

+ ‖Im (y)‖
2
2

(Im (y))
T
A−1Im (y)

‖Im (y)‖
2
2

)

≥
1

‖y‖
2
2

(

‖Re (y)‖
2
2 λmin

(
A−1

)
+ ‖Im (y)‖

2
2 λmin

(
A−1

))

= λmin

(
A−1

)
=

1

λmax (A)
=

1

ρ (A)
.

That means, the choice α < 1/ρ (A) guarantees the convergence of the Richardson
method. 2

Remark 4.7 Residual minimzation for choosing αk. One possibility to choose αk

in practice consists in the minimization of the norm of the residual

∥
∥
∥r

(k+1)
∥
∥
∥

2

2
=

∥
∥
∥b−Ax(k+1)

∥
∥
∥

2

2
=
∥
∥
∥b−Ax(k) − αkAr(k)

∥
∥
∥

2

2
=
∥
∥
∥r

(k) − αkAr(k)
∥
∥
∥

2

2

=
∥
∥
∥r

(k)
∥
∥
∥

2

2
− 2αkr

(k)TAr(k) + α2
k

∥
∥
∥Ar(k)

∥
∥
∥

2

2
.

The necessary condition for a minimum

d

dαk

∥
∥
∥r

(k+1)
∥
∥
∥

2

2
= 0

gives

αk =
r(k)

T

Ar(k)

∥
∥Ar(k)

∥
∥
2

2

. (4.4)

Since
d2

dα2
k

∥
∥
∥r

(k+1)
∥
∥
∥

2

2
= 2

∥
∥
∥Ar(k)

∥
∥
∥

2

2
> 0,

if r(k) 6= 0, one obtains in fact a minimum. 2

Remark 4.8 Spaces spanned by the iterates. It is by (4.1)

x(1) ∈ x(0) + span
{

r(0)
}

,

x(2) ∈ x(1) + span
{

r(1)
}

∈ x(0) + span
{

r(0), r(1)
}

.
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It holds
r(1) = b−Ax(1) = b−Ax(0) − α0Ar(0) = r(0) − α0Ar(0)

and consequently

x(2) ∈ x(0) + span
{

r(0), Ar(0)
}

.

One obtains by induction

x(k) ∈ x(0) + span
{

r(0), Ar(0), . . . , Ak−1r(0)
}

.

2

Definition 4.9 Krylov subspace. Let q ∈ R
n and A ∈ R

n×n. Then, the space

Km(q, A) := span
{
q, Aq, . . . , Ak−1q

}

is called the Krylov2 subspace of order m which is spanned by q and A. 2

Remark 4.10 Next goal. It holds x(k) ∈ x(0) + Kk

(
r(0), A

)
. In the following,

Richardson’s method will be generalized by constructing the iterates x(k) in this
manifold with respect to certain optimality criteria. 2

2Krylov
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