
EPFL Fall 2019 Scientific Programming
Doctoral School for Engineers
Civil and Environmental Engineering

Week 2 — C++ starter: Hello world

The goal of the present exercises is to discover a simple “Hello” program.

Exercise 1: Exploiting the main arguments

• Get the sources by updating your cloned copy of the SP4E repository
git pull upstream master

• Change directory into the sources
cd exercises/week2/hello/sources

• Compile the program by using the CMake (either ccmake command or CLion)

• Observe the command that is automatically typed.

• Launch the program
./hello

• What is the nature (type) of argc and argv arguments to the function main ?

• To convert a string argument to an integer variable you can use the ’std::stoi’ routine (use the ’man’
command if you seek for the information about that function)

• Modify the main function so that the message printed to screen should be ’Hello N’ with N being a
parameter passed when launching the program.

Exercise 2: First loop

• Modify the program so that the program first computes the series

Sn =
n∑

k=1
k (1)

where n should be taken as an argument and the result should be printed aside of the ‘Hello’.

• How many operations are necessary to perform this series computation ?

• Considering the analytic prediction what is the overhead ?

Exercise 3: Source file and file headers

• The CMakeLists file contains dependencies between sources and targets as well as configuration com-
mands. Please open the file and consider the details.

• Split the obtained program in three files:

1. hello.cc

2. series.cc

3. series.hh



The file series.hh should contain the declaration of a function computeSeries.
int computeSeries(int Niterations);

The file series.cc should contain the definition of that function.
int computeSeries(int Niterations) {

// ...
}

Exercise 4: Debugging

• Compile the hello code using ccmake .. and setting CMAKE_BUILD_TYPE to Debug. For CLion users,
in the Setting, CMake Setting, change the build type to Debug.

• launch gdb manually from a terminal or use the interface of your favorite IDE (we recommend CLion)
gdb hello

• Set a breakpoint to the main function
(gdb) break main

• Run the program and pass the correct arguments
(gdb) run arg1 arg2 arg3...

• Step over each instruction of your main function until the end of the program
(gdb) next
...
(gdb) next

• re-run the program, but this time enter the function you created using the step command.

• Advance into the loop and print the content of your counter
(gdb) print i

• make a conditional breakpoint for when the counter is equal to 10
(gdb) break if i == 10
(gdb) continue

• Change the value of the counter (during the execution of the program) back to zero
(gdb) set var i = 0
(gdb) print i

2


