Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102150831
week4.html
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Feb 17, 15:10
Size
173 KB
Mime Type
text/html
Expires
Wed, Feb 19, 15:10 (2 d)
Engine
blob
Format
Raw Data
Handle
24293694
Attached To
R9316 Omid_Ashtari
week4.html
View Options
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="chrome=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />
<title>talk slides</title>
<!-- Loading the init_reveal macro -->
<!-- Load and configure reveal -->
<script src="js-markdown-extra.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js"></script>
<!-- General and theme style sheets -->
<link rel="stylesheet" href="reveal.js/css/reveal.css">
<link rel="stylesheet" href="reveal.js/css/theme/simple.css" id="theme">
<!-- Loading the mathjax macro -->
<!-- Load mathjax -->
<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": {
styles: {'.MathJax_Display': {"margin": 0}},
linebreaks: { automatic: true }
}
});
</script>
<!-- End of mathjax configuration -->
<!-- Get Font-awesome from cdn -->
<link rel="stylesheet" href="//netdna.bootstrapcdn.com/font-awesome/4.1.0/css/font-awesome.css">
<!-- End of reveal parts -->
<style type="text/css">
.reveal {
font-size: 16px;
}
.reveal h1 {
font-size: 200%;
}
.reveal h2 {
font-size: 150%;
}
.text_cell_render {
text-align: left;
}
a.anchor-link:link {
text-decoration: none;
visibility: hidden;
}
.slide {
}
div.slide{
border-style: solid;
border-width: 2px;
/* display: flex;*/
flex-direction: row;
flex-wrap: wrap;
justify-content: center;
margin-top: 5px;
margin-bottom: 5px;
padding-left: 100px;
padding-right: 100px;
padding-top: 2px;
padding-bottom: 2px;
width: 1000px;
}
/*******************************
** highing tpart
*******************************/
.highlight_text {
color: blue;
}
.highlight-base {
color: #000;
}
.highlight-variable {
color: #000;
}
.highlight-variable-2 {
color: #1a1a1a;
}
.highlight-variable-3 {
color: #333333;
}
.highlight-string {
color: #BA2121;
}
.highlight-comment {
color: #408080;
font-style: italic;
}
.highlight-number {
color: #080;
}
.highlight-atom {
color: #88F;
}
.highlight-keyword {
color: #008000;
font-weight: bold;
}
.highlight-builtin {
color: #008000;
}
.highlight-error {
color: #f00;
}
.highlight-operator {
color: #AA22FF;
font-weight: bold;
}
.highlight-meta {
color: #AA22FF;
}
.highlight-def {
color: #00f;
}
.highlight-string-2 {
color: #f50;
}
.highlight-qualifier {
color: #555;
}
.highlight-bracket {
color: #997;
}
.highlight-tag {
color: #170;
}
.highlight-attribute {
color: #00c;
}
.highlight-header {
color: blue;
}
.highlight-quote {
color: #090;
}
.highlight-link {
color: #00c;
}
.highlight .hll { background-color: #ffffcc }
//.highlight { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #666666 } /* Literal.Number.Bin */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sa { color: #BA2121 } /* Literal.String.Affix */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0000FF } /* Name.Function.Magic */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .vm { color: #19177C } /* Name.Variable.Magic */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
</style>
</head>
<body>
<div class="reveal">
<div class="slides">
<section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="--git-pull-upstream-master--"><center> <span style="color:red"> git pull upstream master </span> </center><a class="anchor-link" href="#--git-pull-upstream-master--">¶</a></h1>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h1><center> Answer questions from <br> the previous session</center></h1>
</div>
</div></div>
</section></section><section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Python-complements-"><center>Python complements </center><a class="anchor-link" href="#Python-complements-">¶</a></h1>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Default-parameters-of-functions">Default parameters of functions<a class="anchor-link" href="#Default-parameters-of-functions">¶</a></h2><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">foo</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
<span class="k">return</span> <span class="n">a</span><span class="o">+</span><span class="n">b</span>
</pre></div>
</div>
</div><div class="fragment" style="width: 100%;float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="args-and-kwargs"><em>args</em> and <em>kwargs</em><a class="anchor-link" href="#args-and-kwargs">¶</a></h2><ul>
<li><strong>args</strong>: list containing un-named arguments</li>
<li><strong>kwargs</strong>: dictionary containing the named arguments</li>
</ul>
<div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">foo</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'args:'</span><span class="p">,</span> <span class="n">args</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'kwrags:'</span><span class="p">,</span> <span class="n">kwargs</span><span class="p">)</span>
<span class="k">return</span> <span class="n">a</span><span class="o">+</span><span class="mi">1</span>
<span class="n">foo</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">toto</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">tata</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
</pre></div>
</div>
</div></div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="lambda-functions:-for_each">lambda functions: for_each<a class="anchor-link" href="#lambda-functions:-for_each">¶</a></h2><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">foo</span><span class="p">(</span><span class="n">a</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="n">a</span><span class="o">*</span><span class="mi">10</span><span class="p">)</span>
<span class="n">l</span> <span class="o">=</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">for_each</span><span class="p">(</span><span class="n">_list</span><span class="p">,</span> <span class="n">func</span><span class="p">):</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">_list</span><span class="p">:</span>
<span class="n">func</span><span class="p">(</span><span class="n">i</span><span class="p">)</span>
<span class="n">for_each</span><span class="p">(</span><span class="n">l</span><span class="p">,</span> <span class="n">foo</span><span class="p">)</span>
<span class="n">for_each</span><span class="p">(</span><span class="n">l</span><span class="p">,</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="o">*</span><span class="mi">10</span><span class="p">))</span>
</pre></div>
</div>
</div><div class="fragment" style="width: 100%;float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="lambda-functions:-transform">lambda functions: transform<a class="anchor-link" href="#lambda-functions:-transform">¶</a></h2><div class="highlight"><pre><span></span><span class="n">applied</span> <span class="o">=</span> <span class="p">[</span><span class="n">foo</span><span class="p">(</span><span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">l</span><span class="p">]</span>
<span class="n">applied</span> <span class="o">=</span> <span class="p">[(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">x</span><span class="o">*</span><span class="mi">10</span><span class="p">)(</span><span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">l</span><span class="p">]</span>
</pre></div>
</div>
</div></div></div>
</section></section><section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="-Numpy-"><center> Numpy </center><a class="anchor-link" href="#-Numpy-">¶</a></h1><p><a href="http://docs.scipy.org/doc/numpy/reference/">Numpy reference</a></p>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
</pre></div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Creating-multi-dimentional-array-zero-filled">Creating multi-dimentional array zero-filled<a class="anchor-link" href="#Creating-multi-dimentional-array-zero-filled">¶</a></h2><div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">))</span>
</pre></div>
</div>
</div><div class="fragment" style="width: 100%;float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Creating--multi-dimentional-array-from-list/tuple">Creating multi-dimentional array from list/tuple<a class="anchor-link" href="#Creating--multi-dimentional-array-from-list/tuple">¶</a></h2><div class="highlight"><pre><span></span><span class="n">l</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],[</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">],[</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">]]</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">l</span><span class="p">)</span>
<span class="n">t</span> <span class="o">=</span> <span class="p">((</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">),(</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">),(</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">))</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">t</span><span class="p">)</span>
</pre></div>
</div>
</div></div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Creating-special-matrix">Creating special matrix<a class="anchor-link" href="#Creating-special-matrix">¶</a></h2><div class="highlight"><pre><span></span><span class="c1"># Identity matrix</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">eye</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="c1"># Matrix filled with ones</span>
<span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">))</span>
<span class="c1"># diagonal matrix</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">diag</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span>
<span class="c1"># random matrix</span>
<span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Numpy-Slicing"><a href="https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html">Numpy Slicing</a><a class="anchor-link" href="#Numpy-Slicing">¶</a></h2><div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
</pre></div>
<ul>
<li>Slicing syntax: m[start:end:stride]</li>
</ul>
</div>
</div><div class="fragment" style="width: 100%;float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<div class="highlight"><pre><span></span><span class="n">m</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="c1"># access index 2</span>
<span class="n">m</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="c1"># access last index</span>
<span class="n">m</span><span class="p">[:</span><span class="mi">2</span><span class="p">]</span> <span class="c1"># sub vector m[0],m[1]</span>
<span class="n">m</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span> <span class="c1"># access m[1], m[2], m[3]</span>
<span class="n">m</span><span class="p">[::</span><span class="mi">2</span><span class="p">]</span> <span class="c1"># access even indexes</span>
<span class="n">m</span><span class="p">[</span><span class="mi">1</span><span class="p">::</span><span class="mi">2</span><span class="p">]</span> <span class="c1"># access odd indexes</span>
<span class="n">m</span><span class="p">[::</span><span class="o">-</span><span class="mi">1</span><span class="p">,:]</span> <span class="c1"># access in decreasing order</span>
</pre></div>
</div>
</div></div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Component-based-algebra">Component-based algebra<a class="anchor-link" href="#Component-based-algebra">¶</a></h2><div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span><span class="mi">3</span><span class="p">))</span>
<span class="c1">#component by component operation</span>
<span class="n">n</span> <span class="o">=</span> <span class="n">m</span><span class="o">*</span><span class="mi">2</span>
<span class="k">print</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">n</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">m</span><span class="o">+</span><span class="n">n</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">m</span><span class="o">*</span><span class="n">n</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">m</span><span class="o">+</span><span class="mi">1</span><span class="p">)</span>
<span class="k">print</span><span class="p">((</span><span class="n">m</span><span class="o">-</span><span class="n">n</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">))</span>
</pre></div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="np.array.shape"><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html">np.array.shape</a><a class="anchor-link" href="#np.array.shape">¶</a></h2><ul>
<li>Size/Dimension of a vector/matrix/tensor is its <strong>shape</strong></li>
<li>It is a tuple</li>
</ul>
<div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="nb">type</span><span class="p">(</span><span class="n">m</span><span class="o">.</span><span class="n">shape</span><span class="p">))</span>
</pre></div>
</div>
</div><div class="full" style="width: 100%; float: left">
<div class="cell border-box-sizing code_cell rendered">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>[[0.43604724 0.61032499 0.61192491]
[0.45600646 0.83326217 0.90362002]]
(2, 3) <class 'tuple'>
</pre>
</div>
</div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="flatten"><a href="https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.ndarray.flatten.html">flatten</a><a class="anchor-link" href="#flatten">¶</a></h2><div class="highlight"><pre><span></span><span class="k">print</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
<span class="n">flat</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="n">flat</span><span class="o">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">flat</span><span class="p">)</span>
</pre></div>
</div>
</div><div class="full" style="width: 100%; float: left">
<div class="cell border-box-sizing code_cell rendered">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>[[0.43604724 0.61032499 0.61192491]
[0.45600646 0.83326217 0.90362002]]
(6,) [0.43604724 0.61032499 0.61192491 0.45600646 0.83326217 0.90362002]
</pre>
</div>
</div>
</div>
</div><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="reshape"><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape">reshape</a><a class="anchor-link" href="#reshape">¶</a></h2><div class="highlight"><pre><span></span><span class="n">reshaped</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="mi">3</span><span class="p">,</span><span class="mi">2</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="n">reshaped</span><span class="p">)</span>
</pre></div>
</div>
</div><div class="full" style="width: 100%; float: left">
<div class="cell border-box-sizing code_cell rendered">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre>[[0.43604724 0.61032499]
[0.61192491 0.45600646]
[0.83326217 0.90362002]]
</pre>
</div>
</div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Scipy-linear-algebra-routines"><a href="http://docs.scipy.org/doc/numpy/reference/routines.linalg.html">Scipy linear algebra routines</a><a class="anchor-link" href="#Scipy-linear-algebra-routines">¶</a></h2><div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],[</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">],[</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">]])</span>
<span class="n">n</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">],[</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">],[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">1</span><span class="p">]])</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">])</span>
<span class="c1"># transposition</span>
<span class="n">m2</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">T</span>
<span class="c1"># matrix-matrix operation</span>
<span class="n">a</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">n</span><span class="p">)</span>
<span class="n">a</span> <span class="o">=</span> <span class="n">m</span><span class="nd">@n</span>
<span class="c1"># matrix-vector operation</span>
<span class="n">v2</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">m</span><span class="p">,</span><span class="n">v</span><span class="p">)</span>
<span class="n">v2</span> <span class="o">=</span> <span class="n">m</span><span class="nd">@v</span>
<span class="c1">#matrix inversion</span>
<span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">m</span><span class="p">)</span>
</pre></div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Numpy-summations"><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html">Numpy summations</a><a class="anchor-link" href="#Numpy-summations">¶</a></h2><div class="highlight"><pre><span></span><span class="n">m</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">],[</span><span class="mi">4</span><span class="p">,</span><span class="mi">5</span><span class="p">,</span><span class="mi">6</span><span class="p">],[</span><span class="mi">7</span><span class="p">,</span><span class="mi">8</span><span class="p">,</span><span class="mi">9</span><span class="p">]])</span>
</pre></div>
<ul>
<li><p>$\sum_{i,j} m_{ij}$</p>
<div class="highlight"><pre><span></span><span class="n">m</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
</pre></div>
</li>
<li><p>$\sum_{i} m_{ij}$ and $\sum_{j} m_{ij}$</p>
</li>
</ul>
<div class="highlight"><pre><span></span><span class="n">m</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">m</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
<ul>
<li>norm: $\sqrt{\sum_{ij} m_{ij}^2}$</li>
</ul>
<div class="highlight"><pre><span></span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">((</span><span class="n">m</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">())</span>
</pre></div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Einsum"><a href="https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html">Einsum</a><a class="anchor-link" href="#Einsum">¶</a></h2><ul>
<li>Tensor product with einstein notation</li>
<li>mat-vec product: $u_i = m_{ik} v_k$</li>
</ul>
<div class="highlight"><pre><span></span><span class="n">u</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'ik,k->i'</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
</pre></div>
<ul>
<li>dot product: $norm = v_k v_k$</li>
</ul>
<div class="highlight"><pre><span></span><span class="n">norm</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'k,k->'</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
</pre></div>
<ul>
<li>Transposition</li>
</ul>
<div class="highlight"><pre><span></span><span class="n">np</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'ij->ji'</span><span class="p">,</span> <span class="n">m</span><span class="p">)</span>
</pre></div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Scipy-optimization"><a href="http://docs.scipy.org/doc/scipy/reference/optimize.html">Scipy optimization</a><a class="anchor-link" href="#Scipy-optimization">¶</a></h1><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">scipy.optimize</span>
<span class="c1"># with a lambda</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">optimize</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="p">((</span><span class="n">x</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(),</span>
<span class="mf">0.</span><span class="p">,</span>
<span class="n">tol</span><span class="o">=</span><span class="mf">1e-9</span><span class="p">)</span>
</pre></div>
</div>
</div><div class="fragment" style="width: 100%;float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<div class="highlight"><pre><span></span><span class="c1"># without a lambda</span>
<span class="k">def</span> <span class="nf">foo</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">center</span><span class="p">):</span>
<span class="k">return</span> <span class="p">(</span><span class="n">x</span><span class="o">-</span><span class="n">center</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">optimize</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">foo</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="n">args</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="p">],</span>
<span class="n">tol</span><span class="o">=</span><span class="mf">1e-9</span><span class="p">)</span>
</pre></div>
</div>
</div></div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">foo</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">center</span><span class="p">):</span>
<span class="k">return</span> <span class="p">(</span><span class="n">x</span><span class="o">-</span><span class="n">center</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">optimize</span><span class="o">.</span><span class="n">minimize</span><span class="p">(</span><span class="n">foo</span><span class="p">,</span> <span class="mf">0.</span><span class="p">,</span> <span class="n">args</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="p">],</span>
<span class="n">tol</span><span class="o">=</span><span class="mf">1e-9</span><span class="p">)</span>
</pre></div>
<ul>
<li>Return of the function gives information about the convergence:</li>
</ul>
</div>
</div><div class="fragment" style="width: 100%;float: left"><div class="full" style="width: 100%; float: left">
<div class="cell border-box-sizing code_cell rendered">
<div class="output_area">
<div class="output_text output_subarea output_execute_result">
<pre> fun: 5.5507662238258444e-17
hess_inv: array([[0.5]])
jac: array([4.68181046e-13])
message: 'Optimization terminated successfully.'
nfev: 9
nit: 2
njev: 3
status: 0
success: True
x: array([0.99999999])</pre>
</div>
</div>
</div>
</div></div></div>
</section></section><section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Matplotlib"><a href="http://matplotlib.org/contents.html">Matplotlib</a><a class="anchor-link" href="#Matplotlib">¶</a></h1><ul>
<li>2D/3D plotting library</li>
<li>publication quality figures</li>
<li>Combined with Numpy/Scipy: gets post-treatment close to figure scripts</li>
</ul>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
</pre></div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Figure&Axe-creation"><a href="https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html">Figure</a>&<a href="https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes">Axe</a> creation<a class="anchor-link" href="#Figure&Axe-creation">¶</a></h2><div class="highlight"><pre><span></span><span class="c1"># Figure object</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="c1"># Axe object</span>
<span class="n">axe</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="n">nrows</span><span class="p">,</span> <span class="n">ncols</span><span class="p">,</span> <span class="n">n_plot</span><span class="p">)</span>
</pre></div>
<ul>
<li>Assumes a grid of plots $nrows \times ncols$</li>
<li><p>Returns plot asociated to <em>n_plot</em> (row major count)</p>
</li>
<li><p>For a single plot:</p>
<div class="highlight"><pre><span></span><span class="n">axe</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
<span class="n">axe</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>
</pre></div>
</li>
</ul>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="The-plot-function">The <a href="https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.plot.html#matplotlib.axes.Axes.plot">plot</a> function<a class="anchor-link" href="#The-plot-function">¶</a></h2><ul>
<li>takes 2 numpy arrays, one for x one for y</li>
</ul>
<div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">x</span><span class="o">**</span><span class="mi">2</span>
<span class="n">axe</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span>
<span class="c1"># Display/Save figures</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">savefig</span><span class="p">(</span><span class="s2">"figure.pdf"</span><span class="p">)</span>
</pre></div>
</div>
</div><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="cell border-box-sizing code_cell rendered">
<div class="output_area">
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="o">%</span><span class="n">matplotlib</span> <span class="n">inline</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">x</span><span class="o">**</span><span class="mi">2</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">axe</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">axe</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Axes-labels">Axes labels<a class="anchor-link" href="#Axes-labels">¶</a></h2><div class="highlight"><pre><span></span><span class="n">axe</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="s2">"X axis"</span><span class="p">)</span>
<span class="n">axe</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">"$X^2$"</span><span class="p">)</span>
</pre></div>
<h2 id="Axes-ranges">Axes ranges<a class="anchor-link" href="#Axes-ranges">¶</a></h2><div class="highlight"><pre><span></span><span class="n">axe</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">((</span><span class="n">ymin</span><span class="p">,</span><span class="n">ymax</span><span class="p">))</span>
<span class="n">axe</span><span class="o">.</span><span class="n">set_xlim</span><span class="p">((</span><span class="n">xmin</span><span class="p">,</span><span class="n">xmax</span><span class="p">))</span>
</pre></div>
</div>
</div><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="cell border-box-sizing code_cell rendered">
<div class="output_area">
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Curves-legend">Curves legend<a class="anchor-link" href="#Curves-legend">¶</a></h2><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">10</span><span class="p">)</span>
<span class="n">y1</span> <span class="o">=</span> <span class="n">x</span><span class="o">**</span><span class="mi">2</span>
<span class="n">y2</span> <span class="o">=</span> <span class="n">x</span><span class="o">**</span><span class="mi">3</span>
<span class="n">y3</span> <span class="o">=</span> <span class="n">x</span><span class="o">**</span><span class="mi">4</span>
<span class="n">axe</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y1</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="s2">"$x^2$"</span><span class="p">)</span>
<span class="n">axe</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y2</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="s2">"$x^3$"</span><span class="p">)</span>
<span class="n">axe</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y3</span><span class="p">,</span><span class="n">label</span><span class="o">=</span><span class="s2">"$x^4$"</span><span class="p">)</span>
<span class="n">axe</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
</pre></div>
</div>
</div><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="cell border-box-sizing code_cell rendered">
<div class="output_area">
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Line-style">Line style<a class="anchor-link" href="#Line-style">¶</a></h2><div class="highlight"><pre><span></span><span class="c1">#line only</span>
<span class="n">axe</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y1</span><span class="p">,</span><span class="s1">'-'</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="s2">"$x^2$"</span><span class="p">)</span>
<span class="c1">#points only</span>
<span class="n">axe</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y2</span><span class="p">,</span><span class="s1">'o'</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="s2">"$x^2$"</span><span class="p">)</span>
<span class="c1">#lines points</span>
<span class="n">axe</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y3</span><span class="p">,</span><span class="s1">'o-'</span><span class="p">,</span>
<span class="n">label</span><span class="o">=</span><span class="s2">"$x^2$"</span><span class="p">)</span>
</pre></div>
</div>
</div><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="cell border-box-sizing code_cell rendered">
<div class="output_area">
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Axes-3D"><a href="https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html">Axes 3D</a><a class="anchor-link" href="#Axes-3D">¶</a></h2><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">from</span> <span class="nn">mpl_toolkits.mplot3d</span> <span class="kn">import</span> <span class="n">Axes3D</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span>
<span class="n">axe</span> <span class="o">=</span> <span class="n">Axes3D</span><span class="p">(</span><span class="n">fig</span><span class="p">)</span>
</pre></div>
</div>
</div><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<div class="highlight"><pre><span></span><span class="n">theta</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span>
<span class="o">-</span><span class="mi">4</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">4</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span>
<span class="mi">100</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">z</span><span class="o">**</span><span class="mi">2</span> <span class="o">+</span> <span class="mi">1</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">r</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">theta</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">r</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">theta</span><span class="p">)</span>
<span class="n">axe</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">z</span><span class="p">)</span>
</pre></div>
</div>
</div><div class="split" style="width: 45%;padding: 2.5%; float: left">
<div class="cell border-box-sizing code_cell rendered">
<div class="output_area">
<div class="output_png output_subarea ">
<img src="
"
>
</div>
</div>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Matplotlib-documentation-links">Matplotlib documentation links<a class="anchor-link" href="#Matplotlib-documentation-links">¶</a></h2><p><a href="http://matplotlib.org/api/figure_api.html?highlight\%3Dfigure#module-matplotlib.figure">Matplotlib: figure</a></p>
<p><a href="http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes">Matplotlib: Axes</a></p>
<p><a href="http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.plot">Matplotlib: Axes.plot function</a></p>
<p><a href="http://matplotlib.org/gallery.html">Matplotlib: Gallery</a></p>
<p><a href="https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html">Matplotlib: 3D tutorial</a></p>
</div>
</div></div>
</section></section><section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="argparse-module"><em>argparse</em> module<a class="anchor-link" href="#argparse-module">¶</a></h1>
</div>
</div><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<p>A module to parse arguments passed to your program</p>
<p><a href="https://docs.python.org/3/library/argparse.html">Argparse: documentation</a></p>
<p><a href="https://docs.python.org/3.6/howto/argparse.html">Argparse: documentation</a></p>
</div>
</div></div>
</section><section>
<div class="slide" style="float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Basic-usage">Basic usage<a class="anchor-link" href="#Basic-usage">¶</a></h2><ul>
<li>simple creation of parser</li>
</ul>
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">argparse</span>
<span class="n">parser</span> <span class="o">=</span> <span class="n">argparse</span><span class="o">.</span><span class="n">ArgumentParser</span><span class="p">()</span>
</pre></div>
</div>
</div><div class="fragment" style="width: 100%;float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>Adding arguments</li>
</ul>
<div class="highlight"><pre><span></span><span class="n">parser</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s1">'echo'</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="nb">str</span><span class="p">,</span>
<span class="n">help</span><span class="o">=</span><span class="s1">'will print this parameter to screen'</span><span class="p">)</span>
<span class="n">parser</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s1">'--verbose'</span><span class="p">,</span> <span class="n">action</span><span class="o">=</span><span class="s1">'store_true'</span><span class="p">,</span>
<span class="n">help</span><span class="o">=</span><span class="s1">'will increase verbosity'</span><span class="p">)</span>
<span class="n">parser</span><span class="o">.</span><span class="n">add_argument</span><span class="p">(</span><span class="s1">'--factor'</span><span class="p">,</span> <span class="nb">type</span><span class="o">=</span><span class="nb">float</span><span class="p">,</span> <span class="n">default</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">help</span><span class="o">=</span><span class="s1">'specify a factor'</span><span class="p">)</span>
</pre></div>
</div>
</div></div><div class="fragment" style="width: 100%;float: left"><div class="full" style="width: 100%; float: left">
<div class="text_cell_render border-box-sizing rendered_html">
<ul>
<li>Effective parsing</li>
</ul>
<div class="highlight"><pre><span></span><span class="n">args</span> <span class="o">=</span> <span class="n">parser</span><span class="o">.</span><span class="n">parse_args</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="n">args</span><span class="o">.</span><span class="n">echo</span><span class="p">,</span> <span class="n">args</span><span class="o">.</span><span class="n">factor</span><span class="p">)</span>
</pre></div>
</div>
</div></div></div>
</section></section>
</div>
</div>
<!-- loads reveal -->
<script>
require(
{
// it makes sense to wait a little bit when you are loading
// reveal from a cdn in a slow connection environment
waitSeconds: 1
},
[
"reveal.js/lib/js/head.min.js",
"reveal.js/js/reveal.js"
],
function(head, Reveal){
Reveal.initialize({
//width: '1200px',
//height: '100%'
// margins: 0.1,
controls: true,
progress: true,
history: true,
transition: 'fade',
margin: 0.02,
progress: true,
slideNumber: true,
// Optional libraries used to extend on reveal.js plugins
dependencies: [
{ src: 'reveal.js/lib/js/classList.js',
condition: function() { return !document.body.classList; }
},
{ src: 'reveal.js/plugin/markdown/marked.js',
condition: function() { return !!document.querySelector( '[data-markdown]' ); }
},
{ src: 'reveal.js/plugin/markdown/markdown.js',
condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: 'reveal.js/plugin/highlight/highlight.js',
async: true, callback: function() { hljs.initHighlightingOnLoad(); }
},
{ src: 'reveal.js/plugin/zoom-js/zoom.js', async: true },
{ src: 'reveal.js/plugin/notes/notes.js',
async: true, condition: function() { return !!document.body.classList; }
}]});
var update = function(event){
if(MathJax.Hub.getAllJax(Reveal.getCurrentSlide())){
MathJax.Hub.Rerender(Reveal.getCurrentSlide());
}
};
Reveal.addEventListener('slidechanged', update);
}
);
$(document).ready(function(){
//$(".cell").css("width","90%");
//$(".cell").css("margin","0 auto");
//$(".output_area").css("text-align","center");
//$(".output_png").css("margin","0 auto");
//$("img").css("margin","0 auto");
//$(".output_html").css("margin", "0 auto");
//$(".output_latex").css("margin", "0 auto");
//$(".output_subarea").css("flex", "None");
$( "markdown" ).each(function( index ) {
$( this ).html(Markdown($( this ).text()));
});
})
</script>
</body>
</html>
Event Timeline
Log In to Comment