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1. Introduction

Understanding the structural wiring of the brain at its most global scale, and how

information flows between remote processing centres, are essential questions to shed

light on higher-order behaviours involving multi-modal integration and associated brain

disorders. When it comes to functional magnetic resonance imaging (fMRI), the

mapping of brain function is commonly performed from resting-state (RS) recordings

through the computation of functional connectivity (FC), that is, the statistical

interdependence between different time courses reflective of regional activity (Friston

1994), as can be assessed from an array of measures (Smith, Miller, Salimi-Khorshidi,

Webster, Beckmann, Nichols, Ramsey & Woolrich 2010). This approach has revealed

the presence of a set of RS networks (RSNs) (Damoiseaux, Rombouts, Barkhof,

Scheltens, Stam, Smith & Beckmann 2006, Power, Fair, Schlaggar & Petersen 2010),

whose properties are critical landmarks of brain function and cognition (Bressler &

Menon 2010, van den Heuvel & Hulshoff Pol 2010).

Over the past decade, it has become increasingly clear that quantifying FC between two

brain regions as one scalar for a full scanning session is an overly simplistic approach

that does not characterise the numerous reconfigurations that occur at the time scale of

seconds (Chang & Glover 2010). Accordingly, many methodological pipelines have been

developed to dig into time-resolved FC, and map brain function dynamically (see (Preti,

Bolton & Van De Ville 2017, Lurie, Kessler, Bassett, Betzel, Breakspear, Keilholz,

Kucyi, Liégeois, Lindquist & McIntosh 2018) for contemporary reviews).

The most notorious family of dynamic approaches simplifies the originally voxel-wise

fMRI data into a state-level representation: first, FC is computed over successive

temporal sub-windows, and the concatenated data across the full subject population at

hand is subjected to hard clustering to yield a set of dynamic FC (dFC) states (Allen,

Damaraju, Plis, Erhardt, Eichele & Calhoun 2014, Damaraju, Allen, Belger, Ford,

McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp &

Calhoun 2014). Because spatial Independent Component Analysis (ICA) is typically

performed prior to clustering, each state stands for a set of RSNs showing specific

correlational relationships.

In other analytical schemes, whole-brain voxelwise activity (Liu, Chang & Duyn 2013),

or activity transients (Karahanoğlu & Van De Ville 2015), undergo clustering instead

of FC patterns; in this case, each of the retrieved centroids directly stands for an RSN.

If temporal ICA is applied after spatial ICA, temporally mutually independent RSNs

are retrieved (Smith, Miller, Moeller, Xu, Auerbach, Woolrich, Beckmann, Jenkinson,

Andersson, Glasser et al. 2012). Finally, the use of a hidden Markov model (HMM) also

enables to derive RSNs, as represented under the form of (sparse) FC patterns (Eavani,

Satterthwaite, Gur, Gur & Davatzikos 2013, Vidaurre, Smith & Woolrich 2017) or

vectors of activation (Chen, Langely, Chen & Hu 2016).
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In all the above cases, there is the underlying assumption that the raw fMRI data can

be downscaled to a set of RSNs, and that the dynamics of brain function should be

understood from this simplified starting point. Recent results, however, question the

validity of this assumption: for instance, some brain regions do not remain attached

to the same network throughout a scanning session, but instead adjust their modular

allegiance over time in a way that relates to cognitive performance (Chen, Cai, Ryali,

Supekar & Menon 2016, Pedersen, Zalesky, Omidvarnia & Jackson 2018). In addition,

brain regions or networks also morph spatially over time (Kiviniemi, Vire, Remes,

Elseoud, Starck, Tervonen & Nikkinen 2011, Kottaram, Johnston, Ganella, Pantelis,

Kotagiri & Zalesky 2018, Iraji, Fu, Damaraju, DeRamus, Lewis, Bustillo, Lenroot,

Belger, Ford, McEwen et al. 2019).

To capture these spatially more subtle reconfigurations, novel methodologies have

attempted to operate at the regional scale, and the assessment of causal relationships

(i.e., from time t to t + 1) between distinct areas showed particular merits as

an alternative conceptualisation of RS functional brain dynamics, be it through

autoregressive models (Liégeois, Laumann, Snyder, Zhou & Yeo 2017, Lennartz,

Schiefer, Rotter, Hennig & LeVan 2018) or Ornstein-Uhlenbeck processes (Gilson,

Moreno-Bote, Ponce-Alvarez, Ritter & Deco 2016).

At present, there are thus two conceptually discrepant ways to view RS dFC: on the

one hand, expressing it as sets of simultaneously activating regions that make networks,

and on the other hand, viewing it as effective connectivity between individual areas. It

remains to be determined which of these two viewpoints offers the best representation

of RS dynamics, and whether they describe overlapping or distinct facets of the data.

In this work, we have attempted to progress in answering these questions by developing a

novel methodological framework that jointly estimate sets of co-activations, and causal

couplings, between individual brain regions. A dedicated parameter also enables to

modulate the trade-off in data fitting between these two viewpoints.
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2. Methods

2.1. Mathematical framework

2.2. Implementation

2.3. Simulated data

2.4. Experimental fMRI data

3. Results

4. Discussion
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