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1. Introduction

Understanding the structural wiring of the brain at its most global scale, and how

information flows between remote processing centres, are essential questions to shed

light on higher-order behaviours involving multi-modal integration and associated brain

disorders. When it comes to functional magnetic resonance imaging (fMRI), the

mapping of brain function is commonly performed from resting-state (RS) recordings

through the computation of functional connectivity (FC), that is, the statistical

interdependence between different time courses reflective of regional activity (Friston

1994), as can be assessed from an array of measures (Smith, Miller, Salimi-Khorshidi,

Webster, Beckmann, Nichols, Ramsey & Woolrich 2010). This approach has revealed the

presence of a set of RS networks (RSNs) (Damoiseaux, Rombouts, Barkhof, Scheltens,

Stam, Smith & Beckmann 2006, Power, Fair, Schlaggar & Petersen 2010, Yeo, Krienen,

Sepulcre, Sabuncu, Lashkari, Hollinshead, Roffman, Smoller, Zöllei, Polimeni et al.

2011), whose properties are critical landmarks of brain function and cognition (Bressler

& Menon 2010, van den Heuvel & Hulshoff Pol 2010).

Over the past decade, it has become increasingly clear that quantifying FC between two

brain regions as one scalar for a full scanning session is an overly simplistic approach

that does not characterise the numerous reconfigurations that occur at the time scale of

seconds (Chang & Glover 2010). Accordingly, many methodological pipelines have been

developed to dig into time-resolved FC, and map brain function dynamically (see (Preti,

Bolton & Van De Ville 2017, Lurie, Kessler, Bassett, Betzel, Breakspear, Keilholz,

Kucyi, Liégeois, Lindquist & McIntosh 2018) for contemporary reviews).

The most notorious family of dynamic approaches simplifies the originally voxel-wise

fMRI data into a state-level representation: first, FC is computed over successive

temporal sub-windows, and the concatenated data across the full subject population at

hand is subjected to hard clustering to yield a set of dynamic FC (dFC) states (Allen,

Damaraju, Plis, Erhardt, Eichele & Calhoun 2014, Damaraju, Allen, Belger, Ford,

McEwen, Mathalon, Mueller, Pearlson, Potkin, Preda, Turner, Vaidya, van Erp &

Calhoun 2014). Because spatial Independent Component Analysis (ICA) is typically

performed prior to clustering, each state stands for a set of RSNs showing specific

correlational relationships.

In other analytical schemes, whole-brain voxelwise activity (Liu, Chang & Duyn 2013),

or activity transients (Karahanoğlu & Van De Ville 2015), undergo clustering instead

of FC patterns; in this case, each of the retrieved centroids directly stands for an RSN.

If temporal ICA is applied after spatial ICA, temporally mutually independent RSNs

are retrieved (Smith, Miller, Moeller, Xu, Auerbach, Woolrich, Beckmann, Jenkinson,

Andersson, Glasser et al. 2012). Finally, the use of a hidden Markov model (HMM) also

enables to derive RSNs, as represented under the form of (sparse) FC patterns (Eavani,

Satterthwaite, Gur, Gur & Davatzikos 2013, Vidaurre, Smith & Woolrich 2017) or
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vectors of activation (Chen, Langely, Chen & Hu 2016).

In all the above cases, there is the underlying assumption that the raw fMRI data can

be downscaled to a set of RSNs, and that the dynamics of brain function should be

understood from this simplified starting point. Recent results, however, question the

validity of this assumption: for instance, some brain regions do not remain attached

to the same network throughout a scanning session, but instead adjust their modular

allegiance over time in a way that relates to cognitive performance (Chen, Cai, Ryali,

Supekar & Menon 2016, Pedersen, Zalesky, Omidvarnia & Jackson 2018). In addition,

brain regions or networks also morph spatially over time (Kiviniemi, Vire, Remes,

Elseoud, Starck, Tervonen & Nikkinen 2011, Kottaram, Johnston, Ganella, Pantelis,

Kotagiri & Zalesky 2018, Iraji, Fu, Damaraju, DeRamus, Lewis, Bustillo, Lenroot,

Belger, Ford, McEwen et al. 2019).

To capture these spatially more subtle reconfigurations, novel methodologies have

attempted to operate at the regional scale, and the assessment of causal relationships

(i.e., from time t to t + 1) between distinct areas showed particular merits as

an alternative conceptualisation of RS functional brain dynamics, be it through

autoregressive models (Liégeois, Laumann, Snyder, Zhou & Yeo 2017, Lennartz,

Schiefer, Rotter, Hennig & LeVan 2018) or Ornstein-Uhlenbeck processes (Gilson,

Moreno-Bote, Ponce-Alvarez, Ritter & Deco 2016).

At present, there are thus two conceptually discrepant ways to view RS dFC: on the

one hand, expressing it as sets of simultaneously activating regions that make networks,

and on the other hand, viewing it as effective connectivity between individual areas. It

remains to be determined which of these two viewpoints offers the best representation

of RS dynamics, and whether they describe overlapping or distinct facets of the data.

In this work, we have attempted to progress in answering these questions by developing a

novel methodological framework that jointly estimate sets of co-activations, and causal

couplings, between individual brain regions. A dedicated parameter also enables to

modulate the trade-off in data fitting between these two viewpoints.
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2. Materials and Methods

2.1. Mathematical framework

Let us denote the activity of a region r (out of R in total) at time t as h
(r)
t . We

hypothesise two possible states of activity: baseline (h
(r)
t = 0) or active (h

(r)
t =

+1). Each region may interact with all the other areas s 6= r in two ways: (1)

showing simultaneous activity (that is, episodes of co-activation), or (2) being causally

modulated. To jointly describe these two phenomena, we characterise the probability

of a region r to switch between activity states as a logistic regression (Friedman, Hastie

& Tibshirani 2010): P(h
(r)
t+1 = +1|h(r)t = 0,h

(−r)
t ,h

(−r)
t+1 ) = 1

1+e
−(α

(r)
A

+γ
(r)>
A

h
(−r)
t+1 +β

(r)>
A

h
(−r)
t )

P(h
(r)
t+1 = 0|h(r)t = +1,h

(−r)
t ,h

(−r)
t+1 ) = 1

1+e
−(α

(r)
D

+γ
(r)>
D

h
(−r)
t+1 +β

(r)>
D

h
(−r)
t )

. (1)

The baseline-to-active transition is modelled by the first equation, while the return

to baseline from an active state is governed by the second. Associated coefficients are

respectively written with the ·A and ·D subscripts. In what follows, for the sake of clarity,

we will omit these subscripts and only show one set of equations, as the formulations

are strictly equivalent for both types of transitions.

If all other regions are at a baseline level of activity at the start (h
(−r)
t = 0) and end

(h
(−r)
t+1 = 0) of the transition, only the scalar coefficient α(r) plays a role in shaping the

transition likelihood. The vector γ(r) ∈ RR−1 contains the co-activation coefficients for

all regions s 6= r: positive-valued coefficients will enhance the likelihood of the transition

of interest if h
(s)
t+1 = +1 (that is, if regions r and s are co-active at time t+ 1). Negative-

valued coefficients will, likewise, reduce the transition probability. The reasoning is

similar for the vector β(r) ∈ RR−1, except that a modulatory effect is then exerted if

h
(s)
t = +1 (i.e., region s is active before the transition, resulting in a causal modulation

instead of a co-activation).

If the above pair of equations is considered for each brain region, the resulting coefficients

can be arranged in two types of matrices, where the rth column contains the influences

onto region r (diagonal elements are left empty): one type is reflective of co-activations,

which we be termed Γ, and one symbolises causal modulations, and will be referred to as

B. Γ and B can respectively be interpreted as equivalents of the functional connectome

and effective connectome. An overview of our framework is provided in Figure 1.

The concomitant modelling of co-activations and causal modulations enables to jointly

derive the two sets of coefficients. Given the fact that the resting brain is often described

as a series of RSNs (Damoiseaux et al. 2006, Power et al. 2010, Yeo et al. 2011), we

expect Γ to only contain a sparse subset of non-null entries. Similarly, only a restricted

amount of areas or networks are expected to causally modulate each other (Christoff,
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Figure 1. Overview of the framework. (A) Example activity time courses for a

set of 14 regions; each can transit between a baseline state of activity (symbolised

by a grey circle) and an active state (red circle). The green, salmon and blue

underlays highlight the regions that belong to the same RSN, and thus exhibit a

similar transitory dynamics. Regions 10 to 12 evolve according to their own dynamics,

which are independent from all the others. As for regions 13 and 14, they are hubs

that belong to two networks at a time (as rendered by the mixed colour underlay), and

thus turn active as soon as one of their affiliated networks does so. (B) Coefficient

matrices associated to the example presented in (A) for co-activations (top row) and

causal modulations (bottom row). The left column pertains to the transition from

the baseline to the active state: a positive-valued coefficient at l, r means that when

region l is active, it enhances the likelihood of a transition for region r at the same

time point (for co-activations) or one time point later (for causal modulations). The

middle column similarly characterises transitions from the active to the baseline state;

thus, modulations that enhance the overall activity of an area are here reflected by

negative-valued coefficients (i.e., the probability to go down in activity is lowered).

The right column yields total influences summed across both transition types. (C) To

solve the framework, optimal regularisation parameters λ and ξ are first determined

by extracting local maxima of the full likelihood across regions and transition types

(top box). Then, co-activation and causal coefficients are computed for each region r

and transition type (middle box). Finally, the likelihood to switch activity state can

be compared with and without an external region’s influence, to compute a pair-wise

probabilistic modulation coefficient (bottom box). R: region. N: network.
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Irving, Fox, Spreng & Andrews-Hanna 2016, Bolton, Tarun, Sterpenich, Schwartz &

Van De Ville 2017). To fit these neurobiological priors, while also enabling convergence

of the framework with fewer data points, we appended an `1 regularisation term:

ξ||γ(r)||1 + (1− ξ)||β(r)||1 < ρ ∀ r = 1, ..., R. (2)

In the above, the parameter ρ controls the extent of regularisation casted on all

coefficients (it is associated to an inversely proportional parameter λ in the optimisation

equation detailed below). The parameter ξ enables to balance the extent with which the

co-activation and causal sets are regularised: if ξ = 0, regularisation only operates on

causal coefficients, while if ξ = 1, only co-activation coefficients are made sparse. This

respectively amounts to a description of regional brain dynamics where co-activations,

or causal influences, dominate.

2.2. Implementation

Solving the above set of coupled logistic regression equations requires that the activity

levels of all regions be known. To binarise the input time courses, we individually z-score

each, and set to 1/0 the time points with a value above/below 0. While binarisation

may remove part of the insightful information from the original data, it has been used in

recently developed methodological pipelines (Kang, Pae & Park 2019). In the discussion,

we touch upon possibilities to make the framework amenable to a case with more than

2 states of activity.

After defining the activation states, initial parameter estimates can be computed.

Co-activation and modulatory coefficients are all set to 0, and intrinsic transition

probabilities are estimated by a standard HMM approach (Rabiner 1989).

Following (Friedman et al. 2010), in a regularised logistic regression, one attempts to

solve the following:

min
α(r),γ(r),β(r)

−L(r)(α(r),γ(r),β(r)) + λ(ξ||γ(r)||1 + (1− ξ)||β(r)||1), (3)

where r is the assessed region, and the log-likelihood is approximated as:

L(r)(α(r),γ(r),β(r)) = − 1

2|T |
∑
t∈T

ωt(zt−α(r)−γ(r)>h
(−r)
t+1 −β(r)>h

(−r)
t )+C.(4)

The ensemble T contains all the data points for which the probed region is in the

start state of interest at time t (e.g., baseline for the baseline-to-active transitions),

and C is a constant. If we denote the probability of the transition of interest as

p(α(r),γ(r),β(r),h
(−r)
t ,h

(−r)
t+1 ), the parameters ωt and zt depend on the current estimates
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of the coefficients—which we denote with a tilda—as: ωt = p(α̃(r), γ̃(r), β̃
(r)
,h

(−r)
t ,h

(−r)
t+1 )− p(α̃(r), γ̃(r), β̃

(r)
,h

(−r)
t ,h

(−r)
t+1 )2

zt = α̃(r) + γ̃(r)>h
(−r)
t+1 + β̃

(r)>
h
(−r)
t +

yt−p(α̃(r),γ̃(r),β̃
(r)
,h

(−r)
t ,h

(−r)
t+1 )

ωt

. (5)

yt defines whether there was a change in activity level from time t to t + 1 or not

(respectively, yt = 1 or yt = 0). Coefficients are iteratively estimated by a coordinate-

wise descent algorithm, following (Friedman, Hastie, Höfling, Tibshirani et al. 2007):

the initial estimates outlined above are used at the maximal regularisation level λMAX ,

and individual coefficients are successively re-estimated in random order (note that for

α(r) coefficients, which do not enter the `1 regularisation term, soft shrinkage is not

required). The process continues until the change across two iterations becomes lower

than a defined tolerance threshold ε. The next regularisation level is then considered,

using warm restarts to speed up computations (i.e., the estimates obtained at the end

of a regularisation cycle are used as initial values for the following one).

In all the analyses performed in this work, we considered a regularisation path with

λ ∈ [10000, 0.02] (206 logarithmically distributed values), compared five levels of trade-

off between co-activation and causal coefficients (ξ = {0, 0.25, 0.5, 0.75, 1}), and used a

tolerance ε = 10−40.

2.3. Validation of the framework on simulated data

We first sought to validate our pipeline on simulated data containing cross-regional

causal modulations as well as co-activations. To do so, we considered parameters

resembling those of the assessed experimental data (see the following section) as much as

possible. We simulated activity time courses for R = 45 regions, for a total of S = 135

subjects and T = 1190 time points per subject.

To design our simulations in accordance with the RS literature (Yeo et al. 2011), we

considered the presence of N = 7 separate RSNs, each of which could contain between

4 and 7 areas. Time courses for all regions belonging to the same network were similar

(prior to the addition of noise). In addition, we also included a set of areas evolving

according to their own, independent dynamics; since in such a setting, no co-activation

or causal coefficients should be retrieved, these regions can be regarded as a negative

control. Furthermore, a few regions were also set as hubs that jointly belong to two

networks, and activate as soon as one of the networks turns on. Figure 2C (top left

matrix) shows the ground truth co-activation relationships between the set of simulated

regions.

Each simulated dynamics was associated to a probability to switch from the baseline to

the active state, selected uniformly in the [0.2,0.5] interval. Similarly, the probability

to transit from the active to the baseline state was uniformly selected in the [0.7,0.9]
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interval. Causal modulations were introduced between a subset of networks, as

summarised in Figure 2C (top right matrix): when a modulating network turned active,

it could enhance the activity of the modulated network (both by enhancing the likelihood

of a 0 to +1 transition, and reducing that of a +1 to 0 one), as symbolised by a positive-

valued causal coefficient, or decrease that activity, as reflected by a negative-valued

element. We used a shift in transition probability ∆P = 0.6.

Eventually, all time courses were corrupted with Gaussian noise, at standard deviation

σ = 2; indicative time courses for a simulated subject are presented in Figure 2A, where

noise is sufficient not to be able to infer any cross-regional relationships by mere eyesight.

To assess the ability of the framework to recover the ground truth, we computed

Pearson’s spatial correlation coefficient between ground truth and estimated coefficients,

separately for the co-activation and causal sets, and contrasted these similarity measures

to the evolution of the log-likelihood of the data. In addition, we examined whether

the information contained in the co-activation coefficients was sufficient to re-order the

regions into their underlying networks, by computing Ward’s linkage on probabilistic

co-activation values (see Figure 1C, bottom box).

2.4. Application of the framework to experimental fMRI data

We applied our framework to experimental RS fMRI data from the Human Connectome

Project (Van Essen, Smith, Barch, Behrens, Yacoub & Ugurbil 2013). We considered

one scanning session long of T = 1190 time points for S = 135 subjects. The data was

acquired at a fast TR of 720 ms, at a spatial resolution of 2 × 2 × 2 mm3; additional

acquisition details can be found elsewhere (Smith, Beckmann, Andersson, Auerbach,

Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms et al. 2013).

We started from the publicly available minimally preprocessed data. Each voxel-wise

time course was detrended, and constant, linear and quadratic trends were regressed

out at the same time as a Discrete Cosine Transform basis (cutoff frequency: 0.01

Hz). We chose not to perform global signal regression, since it remains a debated

preprocessing step (Murphy & Fox 2017), and in light of recent results showing extensive

relationships between spatio-temporal motion patterns and human behaviour (Bolton,

Zöller, Caballero-Gaudes, Kebets, Glerean & Van De Ville 2019), also decided not

to include individual motion time course regressors (note that motion is handled by

conservative scrubbing at a later stage of the pipeline—see below).

Voxel-wise time courses were averaged into 90 regions of interest defined from the

AAL atlas (Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix,

Mazoyer & Loliot 2002); although more accurate parcellation schemes have been

introduced (Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson,

Beckmann, Jenkinson et al. 2016, Schaefer, Kong, Gordon, Laumann, Zuo, Holmes,
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Eickhoff & Yeo 2017), they involve a larger amount of brain regions and would thus

require an amount of data larger than the available one for accurate estimation. As the

main goal of the present report is the introduction of our framework, rather than its

application to neurobiologically relevant questions, we opted to operate at the smaller

AAL scale.

As a final preprocessing step, scrubbing was performed at a framewise displacement

threshold (Power, Barnes, Snyder, Schlaggar & Petersen 2012) of 0.3 mm, and discarded

frames were re-estimated by cubic spline interpolation.

To assess the reproducibility of our findings, we separately applied our framework to

each hemisphere of the brain; in each case, co-activations and causal modulations were

thus estimated between R = 45 separate areas.

3. Results

3.1. Validation of the framework on simulated data

Figure 2 displays the results of our simulations.

3.2. Application of the framework to experimental fMRI data

4. Discussion
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Liégeois, R., Laumann, T. O., Snyder, A. Z., Zhou, J. & Yeo, B. T. T. (2017). Interpreting temporal

fluctuations in resting-state functional connectivity mri, Neuroimage 163: 437–455.

Liu, X., Chang, C. & Duyn, J. H. (2013). Decomposition of spontaneous brain activity into distinct

fMRI co-activation patterns, Frontiers in Systems Neuroscience 7: 1–11.

URL: http://journal.frontiersin.org/article/10.3389/fnsys.2013.00101/abstract

Lurie, D., Kessler, D., Bassett, D., Betzel, R. F., Breakspear, M., Keilholz, S., Kucyi, A., Liégeois, R.,
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