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1. Introduction

Understanding the structural wiring of the brain at its most global scale, and how

information flows between remote processing centres, are essential questions to shed

light on higher-order behaviours involving multi-modal integration and associated brain

disorders. When it comes to functional magnetic resonance imaging (fMRI), the

mapping of brain function is commonly performed from resting-state (RS) recordings

through the computation of functional connectivity (FC), that is, the statistical

interdependence between different time courses reflective of regional activity [16], as can

be assessed from an array of measures [41]. This approach has revealed the presence

of a set of RS networks (RSNs) [12, 34, 47], whose properties are critical landmarks of

brain function and cognition [5, 44].

Over the past decade, it has become increasingly clear that quantifying FC between two

brain regions as one scalar for a full scanning session is an overly simplistic approach

that does not characterise the numerous reconfigurations that occur at the time scale of

seconds [6]. Accordingly, many methodological pipelines have been developed to dig into

time-resolved FC, and map brain function dynamically (see [36, 29] for contemporary

reviews).

The most notorious family of dynamic approaches simplifies the originally voxel-wise

fMRI data into a state-level representation: first, FC is computed over successive

temporal sub-windows, and the concatenated data across the full subject population at

hand is subjected to hard clustering to yield a set of dynamic FC (dFC) states [1, 11].

Because spatial Independent Component Analysis (ICA) is typically performed prior

to clustering, each state stands for a set of RSNs showing specific correlational

relationships.

In other analytical schemes, whole-brain voxelwise activity [27], or activity

transients [22], undergo clustering instead of FC patterns; in this case, each of the

retrieved centroids directly stands for an RSN. If temporal ICA is applied after spatial

ICA, temporally mutually independent RSNs are retrieved [40]. Finally, the use of a

hidden Markov model (HMM) also enables to derive RSNs, as represented under the

form of (sparse) FC patterns [13, 46] or vectors of activation [8].

In all the above cases, there is the underlying assumption that the raw fMRI data can

be downscaled to a set of RSNs, and that the dynamics of brain function should be

understood from this simplified starting point. Recent results, however, question the

validity of this assumption: for instance, some brain regions do not remain attached

to the same network throughout a scanning session, but instead adjust their modular

allegiance over time in a way that relates to cognitive performance [9, 32]. In addition,

brain regions or networks also morph spatially over time [23, 24, 19].

To capture these spatially more subtle reconfigurations, novel methodologies have
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attempted to operate at the regional scale, and the assessment of causal relationships

(i.e., from time t to t + 1) between distinct areas showed particular merits as

an alternative conceptualisation of RS functional brain dynamics, be it through

autoregressive models [26, 25] or Ornstein-Uhlenbeck processes [17].

At present, there are thus two conceptually discrepant ways to view RS dFC: on the

one hand, expressing it as sets of simultaneously activating regions that make networks,

and on the other hand, viewing it as effective connectivity between individual areas. It

remains to be determined which of these two viewpoints offers the best representation

of RS dynamics, and whether they describe overlapping or distinct facets of the data.

In this work, we have attempted to progress in answering these questions by developing a

novel methodological framework that jointly estimate sets of co-activations, and causal

couplings, between individual brain regions. A dedicated parameter also enables to

modulate the trade-off in data fitting between these two viewpoints.
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2. Materials and Methods

2.1. Mathematical framework

Let us denote the activity of a region r (out of R in total) at time t as h
(r)
t . We

hypothesise two possible states of activity: baseline (h
(r)
t = 0) or active (h

(r)
t =

+1). Each region may interact with all the other areas s 6= r in two ways: (1)

showing simultaneous activity (that is, episodes of co-activation), or (2) being causally

modulated. To jointly describe these two phenomena, we characterise the probability

of a region r to switch between activity states as a logistic regression [15]: P(h
(r)
t+1 = +1|h(r)

t = 0,h
(−r)
t ,h

(−r)
t+1 ) = 1

1+e
−(α

(r)
A

+γ
(r)>
A

h
(−r)
t+1 +β

(r)>
A

h
(−r)
t )

P(h
(r)
t+1 = 0|h(r)

t = +1,h
(−r)
t ,h

(−r)
t+1 ) = 1

1+e
−(α

(r)
D

+γ
(r)>
D

h
(−r)
t+1 +β

(r)>
D

h
(−r)
t )

. (1)

The baseline-to-active transition is modelled by the first equation, while the return

to baseline from an active state is governed by the second. Associated coefficients are

respectively written with the ·A and ·D subscripts. In what follows, for the sake of clarity,

we will omit these subscripts and only show one set of equations, as the formulations

are strictly equivalent for both types of transitions.

If all other regions are at a baseline level of activity at the start (h
(−r)
t = 0) and end

(h
(−r)
t+1 = 0) of the transition, only the scalar coefficient α(r) plays a role in shaping the

transition likelihood. The vector γ(r) ∈ RR−1 contains the co-activation coefficients for

all regions s 6= r: positive-valued coefficients will enhance the likelihood of the transition

of interest if h
(s)
t+1 = +1 (that is, if regions r and s are co-active at time t+ 1). Negative-

valued coefficients will, likewise, reduce the transition probability. The reasoning is

similar for the vector β(r) ∈ RR−1, except that a modulatory effect is then exerted if

h
(s)
t = +1 (i.e., region s is active before the transition, resulting in a causal modulation

instead of a co-activation).

If the above pair of equations is considered for each brain region, the resulting coefficients

can be arranged in two types of matrices, where the rth column contains the influences

onto region r (diagonal elements are left empty): one type is reflective of co-activations,

which we be termed Γ, and one symbolises causal modulations, and will be referred to as

B. Γ and B can respectively be interpreted as equivalents of the functional connectome

and effective connectome. An overview of our framework is provided in Figure 1.

The concomitant modelling of co-activations and causal modulations enables to jointly

derive the two sets of coefficients. Given the fact that the resting brain is often described

as a series of RSNs [12, 34, 47], we expect Γ to only contain a sparse subset of non-null

entries. Similarly, only a restricted amount of areas or networks are expected to causally

modulate each other [10, 3]. To fit these neurobiological priors, while also enabling

convergence of the framework with fewer data points, we appended an `1 regularisation
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Figure 1. Overview of the framework. (A) Example activity time courses for a set of 14
regions; each can transit between a baseline state of activity (symbolised by a grey circle) and an
active state (red circle). The green, salmon and blue underlays highlight the regions that belong to
the same RSN, and thus exhibit a similar transitory dynamics. Regions 10 to 12 evolve according to
their own dynamics, which are independent from all the others. As for regions 13 and 14, they are
hubs that belong to two networks at a time (as rendered by the mixed colour underlay), and thus turn
active as soon as one of their affiliated networks does so. (B) Coefficient matrices associated to the
example presented in (A) for co-activations (top row) and causal modulations (bottom row). The left
column pertains to the transition from the baseline to the active state: a positive-valued coefficient
at l, r means that when region l is active, it enhances the likelihood of a transition for region r at
the same time point (for co-activations) or one time point later (for causal modulations). The middle
column similarly characterises transitions from the active to the baseline state; thus, modulations
that enhance the overall activity of an area are here reflected by negative-valued coefficients (i.e., the
probability to go down in activity is lowered). The right column yields total influences summed across
both transition types. (C) To solve the framework, optimal regularisation parameters λ and ξ are
first determined by extracting local maxima of the full likelihood across regions and transition types
(top box). Then, co-activation and causal coefficients are computed for each region r and transition
type (middle box). Finally, the likelihood to switch activity state can be compared with and without
an external region’s influence, to compute a pair-wise probabilistic modulation coefficient (bottom
box). R: region. N: network.

term:

ξ||γ(r)||1 + (1− ξ)||β(r)||1 < ρ ∀ r = 1, ..., R. (2)

In the above, the parameter ρ controls the extent of regularisation casted on all

coefficients (it is associated to an inversely proportional parameter λ in the optimisation

equation detailed below). The parameter ξ enables to balance the extent with which the

co-activation and causal sets are regularised: if ξ = 0, regularisation only operates on

causal coefficients, while if ξ = 1, only co-activation coefficients are made sparse. This
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respectively amounts to a description of regional brain dynamics where co-activations,

or causal influences, dominate.

2.2. Implementation

Solving the above set of coupled logistic regression equations requires that the activity

levels of all regions be known. To binarise the input time courses, we individually z-score

each, and set to 1/0 the time points with a value above/below 0. While binarisation

may remove part of the insightful information from the original data, it has been used

in recently developed methodological pipelines [20]. In the discussion, we touch upon

possibilities to make the framework amenable to a case with more than 2 states of

activity.

After defining the activation states, initial parameter estimates can be computed.

Co-activation and modulatory coefficients are all set to 0, and intrinsic transition

probabilities are estimated by a standard HMM approach [37].

Following [15], in a regularised logistic regression, one attempts to solve the following:

min
α(r),γ(r),β(r)

−L(r)(α(r),γ(r),β(r)) + λ(ξ||γ(r)||1 + (1− ξ)||β(r)||1), (3)

where r is the assessed region, and the log-likelihood is approximated as:

L(r)(α(r),γ(r),β(r)) = − 1

2|T |
∑
t∈T

ωt(zt−α(r)−γ(r)>h
(−r)
t+1 −β(r)>h

(−r)
t )+C.(4)

The ensemble T contains all the data points for which the probed region is in the

start state of interest at time t (e.g., baseline for the baseline-to-active transitions),

and C is a constant. If we denote the probability of the transition of interest as

p(α(r),γ(r),β(r),h
(−r)
t ,h

(−r)
t+1 ), the parameters ωt and zt depend on the current estimates

of the coefficients—which we denote with a tilda—as: ωt = p(α̃(r), γ̃(r), β̃
(r)
,h

(−r)
t ,h

(−r)
t+1 )− p(α̃(r), γ̃(r), β̃

(r)
,h

(−r)
t ,h

(−r)
t+1 )2

zt = α̃(r) + γ̃(r)>h
(−r)
t+1 + β̃

(r)>
h

(−r)
t +

yt−p(α̃(r),γ̃(r),β̃
(r)
,h

(−r)
t ,h

(−r)
t+1 )

ωt

. (5)

yt defines whether there was a change in activity level from time t to t + 1 or not

(respectively, yt = 1 or yt = 0). Coefficients are iteratively estimated by a coordinate-

wise descent algorithm, following [14]: the initial estimates outlined above are used

at the maximal regularisation level λMAX , and individual coefficients are successively

re-estimated in random order (note that for α(r) coefficients, which do not enter the

`1 regularisation term, soft shrinkage is not required). The process continues until

the change across two iterations becomes lower than a defined tolerance threshold

ε. The next regularisation level is then considered, using warm restarts to speed up

computations (i.e., the estimates obtained at the end of a regularisation cycle are used

as initial values for the following one).
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In all the analyses performed in this work, we considered a regularisation path with

λ ∈ [10000, 0.02] (206 logarithmically distributed values), compared five levels of trade-

off between co-activation and causal coefficients (ξ = {0, 0.25, 0.5, 0.75, 1}), and used a

tolerance ε = 10−40.

2.3. Validation of the framework on simulated data

We first sought to validate our pipeline on simulated data containing cross-regional

causal modulations as well as co-activations. To do so, we considered parameters

resembling those of the assessed experimental data (see the following section) as much as

possible. We simulated activity time courses for R = 45 regions, for a total of S = 135

subjects and T = 1190 time points per subject.

To design our simulations in accordance with the RS literature [47], we considered the

presence of N = 7 separate RSNs, each of which could contain between 4 and 7 areas.

Time courses for all regions belonging to the same network were similar (prior to the

addition of noise). In addition, we also included a set of areas evolving according to

their own, independent dynamics; since in such a setting, no co-activation or causal

coefficients should be retrieved, these regions can be regarded as a negative control.

Furthermore, a few regions were also set as hubs that jointly belong to two networks,

and activate as soon as one of the networks turns on. Figure 2C (top left matrix) shows

the ground truth co-activation relationships between the set of simulated regions.

Each simulated dynamics was associated to a probability to switch from the baseline to

the active state, selected uniformly in the [0.2,0.5] interval. Similarly, the probability

to transit from the active to the baseline state was uniformly selected in the [0.7,0.9]

interval. Causal modulations were introduced between a subset of networks, as

summarised in Figure 2C (top right matrix): when a modulating network turned active,

it could enhance the activity of the modulated network (both by enhancing the likelihood

of a 0 to +1 transition, and reducing that of a +1 to 0 one), as symbolised by a positive-

valued causal coefficient, or decrease that activity, as reflected by a negative-valued

element. We used a shift in transition probability ∆P = 0.6.

Eventually, all time courses were corrupted with Gaussian noise, at standard deviation

σ = 2; indicative time courses for a simulated subject are presented in Figure 2A, where

noise is sufficient not to be able to infer any cross-regional relationships by mere eyesight.

To assess the ability of the framework to recover the ground truth, we computed

Pearson’s spatial correlation coefficient between ground truth and estimated coefficients,

separately for the co-activation and causal sets, and contrasted these similarity measures

to the evolution of the log-likelihood of the data. In addition, we examined whether

the information contained in the co-activation coefficients was sufficient to re-order the

regions into their underlying networks, by computing Ward’s linkage on probabilistic
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co-activation values (see Figure 1C, bottom box).

2.4. Application of the framework to experimental fMRI data

We applied our framework to experimental RS fMRI data from the Human Connectome

Project [45]. We considered one scanning session long of T = 1190 time points for

S = 135 subjects. The data was acquired at a fast TR of 720 ms, at a spatial resolution

of 2 × 2 × 2 mm3; additional acquisition details can be found elsewhere [39].

We started from the publicly available minimally preprocessed data. Each voxel-wise

time course was detrended, and constant, linear and quadratic trends were regressed

out at the same time as a Discrete Cosine Transform basis (cutoff frequency: 0.01

Hz). We chose not to perform global signal regression, since it remains a debated

preprocessing step [31], and in light of recent results showing extensive relationships

between spatio-temporal motion patterns and human behaviour [4], also decided not

to include individual motion time course regressors (note that motion is handled by

conservative scrubbing at a later stage of the pipeline—see below).

Voxel-wise time courses were averaged into 90 regions of interest defined from the AAL

atlas [43]; although more accurate parcellation schemes have been introduced [18, 38],

they involve a larger amount of brain regions and would thus require an amount of

data larger than the available one for accurate estimation. As the main goal of the

present report is the introduction of our framework, rather than its application to

neurobiologically relevant questions, we opted to operate at the smaller AAL scale.

Scrubbing was performed at a framewise displacement threshold [33] of 0.3 mm, and

discarded frames were re-estimated by cubic spline interpolation. As a final step, from

the fully preprocessed data, we used a total variation-based denoising approach [21, 2]

to derive cleaned activity-inducing signals freed from haemodynamic effects. We only

included temporal regularisation in the process, without any spatial prior.

To assess the reproducibility of our findings, we separately applied our framework to the

activity-inducing time courses obtained for each hemisphere of the brain; in both cases,

co-activations and causal modulations were thus estimated between R = 45 separate

areas.
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3. Results

3.1. Validation of the framework on simulated data

Figure 2 displays the results of our simulations. Around the largest regularisation

extents (λ1 = 9000), the log-likelihood was low regardless of the balance between

the regularisation of co-activation and causal coefficients, and this was associated to

overall low similarity to the ground truth transition probability modulation patterns

(Figure 2B), an unsurprising feature given that probabilistic modulation coefficients

were then extremely sparse, or (for the less regularised set) randomly distributed (see

λ1 cases in Figure 2C).

When regularisation decreased (i.e., going to the left in Figure 2B plots), the

log-likelihood remained low when regularisation was principally casted on causal

modulations (see the orange and purple curves in the top plot); as seen in the associated

coefficient matrices from Figure 2C, this is because many erroneous coefficients still

populated the co-activation set, which is the dominating factor in the simulated data.

Log-likelihood was more elevated for the schemes that favoured sparsity of co-activation

coefficients (red and blue curves), or enabled an equal regularisation between both sets

(green curve). At the global log-likelihood optimum (λ2 = 190, ξ = 0.5), co-activation

probabilistic modulations were accurately retrieved in a majority (but not all) of cases,

as well as for a still limited subset of causal relationships. This resulted in intermediate

similarity to the ground truth.

When regularisation was further lowered, regardless of the ξ parameter value, all curves

converged towards a common, almost full representation that captured ground truth co-

activation and causal influences with high fidelity: all regional similarity values exceeded

0.8 for co-activations, and for causal modulations, the majority exceeded 0.6. Only hub

regions (for which underlying patterns are by construction more complex) and areas

from network 3 (linked to a negative-valued modulation from network 7) showed slightly

lower similarity values around 0.5, but the related patterns could still be captured in

the associated coefficient matrices from Figure 2C.

Log-likelihood reached a local optimum at λ3 = 8.4, which was very close to the global

one. The slightly lower likelihood value despite the closer match to the ground truth

is explained by the presence of a wide array of small noisy coefficients, seen as small

negative-valued entries in the λ3 matrices of Figure 2C.

To summarise, although the arrangement of regions into networks and their relationships

could not be determined from inspecting the time courses (Figure 2A), they could

be retrieved following the application of our framework. In addition, all regions

could be correctly assigned to their associated network from co-activation probabilistic

couplings (Figure 2D): following hierarchical clustering, 8 distinct groups could indeed

be determined, including the 7 networks of interest and an extra cluster for independent
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Figure 2. Results on simulated data. (A) Example simulated time courses for R = 45 regions,
each displayed as one row for 250 samples. Colour coding denotes the network attribution of the
regions (N1 to N7), as well as independent areas (in white) and hubs (in dark grey). (B) For the
whole path of regularisation (strong to weak regularisation from the right to the left), whole log-
likelihood of the data across brain regions and transition types (top plot), and associated similarity
to the ground truth co-activation (middle plot) and causal (bottom plot) coefficients. The colour
coding of the time courses respectively stands for the trade-off between the co-activation and causal
set regularisations (top plot), and the network assignment of the regions (middle and bottom plot).
The λ1, λ2 and λ3 vertical lines highlight three indicative regularisation levels further detailed in
(C). (C) For co-activation (left column) and causal (right column) coefficients, ground truth values
(top row), and probabilistic cross-regional influences for three co-activation/causal trade-off values
(ξ = 1, 0.5, 0) and overall regularisation levels (λ1 = 9000, λ2 = 190, λ3 = 8.4). (D) Dendrogram for
regional clustering from co-activation probabilistic influences, with the same regional colour coding as
in (A).
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regions. Note that hub areas were all assigned to one of the networks that they were

linked to.

3.2. Application of the framework to experimental fMRI data
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4. Discussion

In this work, we introduced a novel mathematical framework enabling to jointly derive

the patterns of co-activation between brain regions, reflective of the brain’s functional

organisation as a set of RSNs [12, 47], and additional cross-regional causal modulations

that enable to go beyond this network-level characterisation and also model more subtle

cross-regional interplays. One can conceive our strategy as a joint recovery of FC

(embedded in the Γ co-activation coefficients) and effective connectivity (in B).

Our strategy is an improvement over previous work that also used a logistic regression

characterisation to describe causal interactions between functional brain networks [3]:

in this former methodology, however, network maps had to be computed in a separate

analytical step, prior to the establishment of their causal interplays. As such,

and much like the majority of other prominent dynamic FC approaches—see for

instance [28, 1, 22, 46], more subtle relationships at a smaller spatial scale than that of

RSNs are then lost.

On simulated data, both co-activation and causal coefficient sets could accurately be

retrieved by our framework despite marked noise. The optimal log-likelihood of the data

was achieved in a weak regularisation setting, as we considered enough data points for

accurate estimation of the full model: in total, we analysed 160650 time points for the

estimation of 2(R+ (R− 1)R+ (R− 1)R) = 8010 coefficients (two sets of coefficients—

one per type of transition—for individual regional dynamics, co-activation and causal

links), resulting in 20 data points available per estimate. Regularisation is expected

to become more handy when dimensionally larger problems are addressed at a similar

dataset size: for example, it will be interesting to derive coefficients on an extended

set of brain regions obtained with finer parcellations that do not only operate from

structural brain markers [18, 38].

As our simulations primarily included positive-valued coefficients, noisy coefficient

estimates accompanying ground truth values were biased towards negative values (see

the λ3 settings in Figure 2C). This is why the simulated negative causal relationship

between networks 7 and 3 was the least accurately captured one. At stronger

regularisation levels, noisy coefficients disappeared, and a restricted subset of ground

truth entries were recovered, owing to the `1 norm properties [42].

Several strategies may be envisioned to further improve the accuracy of the results

obtained with our framework. First, the purely `1 regularisation strategy could be turned

into an elastic net mix between `1 and `2 norms [48], but it would then come at the cost

of an extra free parameter to specify. Second, additional assumptions could be explicitly

introduced to the model formulation, such as the symmetric and non-negative nature of

Γ. Third, as noise operates to counterbalance strong positive-valued coefficients along

a given column of Γ or B (recall that coefficient estimates are obtained separately

for each region r standing as one matrix column), the framework could be extended to
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successively run through a column-wise (as presently) and a row-wise solving step, where

in the latter case, we would instead be estimating all the modulations emanating from

a given region r (instead of impinging on it). Each of these three options has merits,

but comes at the expense of a greater computational complexity and less streamlined

modelling.

On experimental fMRI data, I should mention the relevance of the ξ parameter, and the

fact that both types of coefficients are captured.

An interesting development for future work could be to characterise, instead of the

probability to transit from a given state of activity to another, the likelihood to show an

activation transient (that is, go up or down in activity regardless of the exact starting

point). By this mean, the current framework could seamlessly be generalised to more

than only 2 states of activity, which may better represent the dynamics of some brain

regions. This information is already available (by comparison to phase-randomised null

data) from the total activation pipeline used in the deconvolution of the analysed fMRI

data [21, 2].

An additional interest would then be the easier comparison of results obtained from

datasets acquired at various TRs, so that the increasingly understood specificities of

fast TR datasets [7, 35] can be better disentangled from more general effects. To do so,

one could determine whether a transient has just occurred prior to the assessed time

point by jointly examining a span of a few time points (t− 1, t− 2, etc.).

Another point worth of interest is that our framework provides more than the

information analysed in the present work: as a matter of fact, while we treated the

0 → +1 and +1 → 0 transitions as mirrors of each other (and subtracted both sets of

probabilistic couplings to obtain the analysed outputs), more complex information may

lie within the individual coefficient matrices. For example, it may be that a given region

is only modulated by another at baseline, but not when it is active.

Finally, a few promising applications of our framework an be foreseen: first, it will

be exciting to compare co-activation and causal coefficients across different subject

populations (e.g., a set of healthy volunteers as opposed to a diseased population). To do

so, bootstrapping could be conducted on each population, and statistical testing could

then be conducted for each coefficient of interest. The examination of subject-specific

properties will, however, be more challenging to address, as population-level estimates

only can be derived for typically available amounts of data. Second, another possible

application could be in hyperscanning [30], where two subjects are scanned in parallel

while they interact. Co-activations, or causal modulations, could be quantified across

both subjects as a way to shed light on the functional underpinnings of cooperative

processing.
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