Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F101634780
ElectrostaticsCode.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Feb 12, 07:25
Size
8 KB
Mime Type
text/x-python
Expires
Fri, Feb 14, 07:25 (2 d)
Engine
blob
Format
Raw Data
Handle
24205259
Attached To
R9442 JuNoTE_git_repository
ElectrostaticsCode.py
View Options
import
sys
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.patches
import
Circle
from
ipywidgets
import
*
import
matplotlib
from
numpy
import
*
from
pylab
import
*
from
scipy.integrate
import
ode
import
math
from
itertools
import
combinations
import
matplotlib.patches
as
patches
import
copy
#%matplotlib notebook
def
update_two_point_charges
(
wx
,
wy
,
q1
,
q2
):
k
=
9
*
10
^
9
f
=
lambda
r
:
(
k
*
q1
*
q2
)
/
r
**
2
r
=
np
.
linspace
(
0.01
,
0.25
,
64
)
force
=
[
abs
(
f
(
ri
))
for
ri
in
list
(
r
)]
fig1
=
plt
.
figure
(
figsize
=
(
15
,
8
))
ax
=
plt
.
subplot
(
121
)
ax
.
set_title
(
'Force vs Separation'
)
ax
.
set_xlabel
(
'Separation'
)
ax
.
set_ylabel
(
'Force'
)
ax
.
plot
(
r
,
force
)
ax2
=
plt
.
subplot
(
122
)
ax2
.
add_artist
(
Circle
((
0.25
,
0.5
),
0.005
,
color
=
"red"
))
#plt.figure(figsize=(10,8))
plt
.
figure
(
figsize
=
(
10
,
8
))
ax2
.
add_artist
(
Circle
((
wx
,
wy
),
0.005
,
color
=
"blue"
))
f_mod
=
f
(
math
.
sqrt
((
wx
-
0.25
)
**
2
+
(
wy
-
0.5
)
**
2
))
*
1e-4
vec_norm
=
math
.
sqrt
((
-
wx
+
0.25
)
**
2
+
(
-
wy
+
0.5
)
**
2
)
vec1
=
f_mod
*
(
wx
-
0.25
)
/
vec_norm
,
f_mod
*
(
wy
-
0.5
)
/
vec_norm
vec2
=
f_mod
*
(
-
wx
+
0.25
)
/
vec_norm
,
f_mod
*
(
-
wy
+
0.5
)
/
vec_norm
ax2
.
arrow
(
0.25
,
0.5
,
*
vec2
,
head_width
=
0.005
,
head_length
=
0.01
)
ax2
.
arrow
(
wx
,
wy
,
*
vec1
,
head_width
=
0.005
,
head_length
=
0.01
)
plt
.
show
()
output_slider_variable
=
widgets
.
Text
()
def
set_n_charges
(
nq
):
output_slider_variable
.
value
=
str
(
nq
)
return
output_slider_variable
def
return_widget_list
(
nc
):
w_list_x
=
[]
w_list_y
=
[]
w_dic
=
{}
val_pos
=
[]
for
i
in
range
(
nc
):
w_dic
[
str
(
i
)
+
"x"
]
=
widgets
.
FloatSlider
(
min
=-
3
,
max
=
3
,
step
=.
3
,
value
=
np
.
cos
(
2
*
np
.
pi
*
i
/
nc
))
w_dic
[
str
(
i
)
+
"y"
]
=
widgets
.
FloatSlider
(
min
=-
3
,
max
=
3
,
step
=.
3
,
value
=
np
.
sin
(
2
*
np
.
pi
*
i
/
nc
))
w_dic
[
str
(
i
)
+
"c"
]
=
widgets
.
IntSlider
(
min
=-
3
,
max
=
3
,
step
=
1
,
value
=
1
)
val_pos
.
append
((
np
.
cos
(
2
*
np
.
pi
*
i
/
nc
),
np
.
sin
(
2
*
np
.
pi
*
i
/
nc
)))
return
w_dic
def
multiple_point_charges
(
**
w_dic
):
k
=
9
*
1e9
fig
=
plt
.
figure
(
figsize
=
(
10
,
8
))
ax
=
plt
.
subplot
(
111
)
charges
=
[]
for
i
in
range
(
int
(
output_slider_variable
.
value
)):
q
=
w_dic
[
str
(
i
)
+
"c"
]
charges
.
append
((
q
,
(
w_dic
[
str
(
i
)
+
"x"
],
w_dic
[
str
(
i
)
+
"y"
])))
#calculating and displaying force on the 0th charge
charge_colors
=
{
True
:
'#aa0000'
,
False
:
'#0000aa'
}
force_on
=
charges
[
0
]
vec
=
[]
force_
=
[]
ax
.
set_xlim
(
-
3
,
3
)
ax
.
set_ylim
(
-
3
,
3
)
for
q
,
pos
in
charges
:
ax
.
add_artist
(
Circle
(
pos
,
0.05
,
color
=
charge_colors
[
q
>
0
]))
vec_
=
{}
force_
=
{}
indx
=
[
i
for
i
in
range
(
int
(
output_slider_variable
.
value
))]
pairs
=
combinations
(
indx
,
2
)
for
p1
,
p2
in
pairs
:
x_v
=
w_dic
[
str
(
p1
)
+
"x"
]
-
w_dic
[
str
(
p2
)
+
"x"
]
y_v
=
w_dic
[
str
(
p1
)
+
"y"
]
-
w_dic
[
str
(
p2
)
+
"y"
]
v_norm
=
math
.
sqrt
(
x_v
**
2
+
y_v
**
2
)
u_x
,
u_y
=
x_v
/
v_norm
,
y_v
/
v_norm
f_norm
=
k
*
w_dic
[
str
(
p1
)
+
"c"
]
*
w_dic
[
str
(
p2
)
+
"c"
]
/
(
v_norm
**
2
)
vec_
.
setdefault
(
p1
,
[])
.
append
((
f_norm
*
u_x
,
f_norm
*
u_y
))
vec_
.
setdefault
(
p2
,
[])
.
append
((
-
f_norm
*
u_x
,
-
f_norm
*
u_y
))
vec_each_charge
=
{}
for
i
in
indx
:
vec
=
vec_
[
i
]
x_vec
=
sum
(
i
for
i
,
j
in
vec
)
y_vec
=
sum
(
j
for
i
,
j
in
vec
)
vec_each_charge
[
i
]
=
(
1e-10
*
x_vec
,
1e-10
*
y_vec
)
for
i
in
indx
:
ax
.
arrow
(
w_dic
[
str
(
i
)
+
"x"
],
w_dic
[
str
(
i
)
+
"y"
],
vec_each_charge
[
i
][
0
],
vec_each_charge
[
i
][
1
],
head_width
=
0.1
,
head_length
=
0.1
)
plt
.
show
()
class
charge
:
def
__init__
(
self
,
q
,
pos
):
self
.
q
=
q
self
.
pos
=
pos
def
E_point_charge
(
q
,
a
,
x
,
y
):
return
q
*
(
x
-
a
[
0
])
/
((
x
-
a
[
0
])
**
2
+
(
y
-
a
[
1
])
**
2
)
**
(
1.5
),
\
q
*
(
y
-
a
[
1
])
/
((
x
-
a
[
0
])
**
2
+
(
y
-
a
[
1
])
**
2
)
**
(
1.5
)
def
E_total
(
x
,
y
,
charges
):
Ex
,
Ey
=
0
,
0
for
C
in
charges
:
E
=
E_point_charge
(
C
.
q
,
C
.
pos
,
x
,
y
)
Ex
=
Ex
+
E
[
0
]
Ey
=
Ey
+
E
[
1
]
return
[
Ex
,
Ey
]
def
E_dir
(
t
,
y
,
charges
):
Ex
,
Ey
=
E_total
(
y
[
0
],
y
[
1
],
charges
)
n
=
sqrt
(
Ex
**
2
+
Ey
*
Ey
)
return
[
Ex
/
n
,
Ey
/
n
]
def
update_dipole
(
wx
):
plt
.
figure
(
figsize
=
(
6
,
4.5
))
charges
=
[]
# charges and positions
charges
=
[
charge
(
1
,
[
-
1
,
0
]),
charge
(
-
1
,
[
wx
,
0
])
]
# plot field lines
x0
,
x1
=-
2
,
2
y0
,
y1
=-
1.5
,
1.5
R
=
0.01
# loop over all charges
for
C
in
charges
:
# plot field lines starting in current charge
dt
=
0.8
*
R
if
C
.
q
<
0
:
dt
=-
dt
# loop over field lines starting in different directions
# around current charge
for
alpha
in
np
.
linspace
(
0
,
2
*
pi
*
15
/
16
,
16
):
r
=
ode
(
E_dir
)
r
.
set_integrator
(
'vode'
)
r
.
set_f_params
(
charges
)
x
=
[
C
.
pos
[
0
]
+
cos
(
alpha
)
*
R
]
y
=
[
C
.
pos
[
1
]
+
sin
(
alpha
)
*
R
]
r
.
set_initial_value
([
x
[
0
],
y
[
0
]],
0
)
while
r
.
successful
():
r
.
integrate
(
r
.
t
+
dt
)
x
.
append
(
r
.
y
[
0
])
y
.
append
(
r
.
y
[
1
])
hit_charge
=
False
# check if field line left drwaing area or ends in some charge
for
C2
in
charges
:
if
sqrt
((
r
.
y
[
0
]
-
C2
.
pos
[
0
])
**
2
+
(
r
.
y
[
1
]
-
C2
.
pos
[
1
])
**
2
)
<
R
:
hit_charge
=
True
if
hit_charge
or
(
not
(
x0
<
r
.
y
[
0
]
and
r
.
y
[
0
]
<
x1
))
or
\
(
not
(
y0
<
r
.
y
[
1
]
and
r
.
y
[
1
]
<
y1
)):
break
ax
=
plt
.
gca
()
as_xi
=
int
(
len
(
x
)
/
2
)
as_yi
=
int
(
len
(
y
)
/
2
)
a_s_x
=
x
[
as_xi
]
a_s_y
=
y
[
as_yi
]
a_e_x
=
x
[
as_xi
+
1
]
a_e_y
=
y
[
as_yi
+
1
]
if
(
C
.
q
>
0
):
ax
.
arrow
(
a_s_x
,
a_s_y
,
(
a_e_x
-
a_s_x
),
(
a_e_y
-
a_s_y
)
,
head_width
=
0.1
)
else
:
ax
.
arrow
(
a_s_x
,
a_s_y
,
-
(
a_e_x
-
a_s_x
),
-
(
a_e_y
-
a_s_y
)
,
head_width
=
0.1
)
plot
(
x
,
y
,
'-k'
)
# plot point charges
for
C
in
charges
:
if
C
.
q
>
0
:
plot
(
C
.
pos
[
0
],
C
.
pos
[
1
],
'bo'
,
ms
=
8
*
sqrt
(
C
.
q
))
if
C
.
q
<
0
:
plot
(
C
.
pos
[
0
],
C
.
pos
[
1
],
'ro'
,
ms
=
8
*
sqrt
(
-
C
.
q
))
output_slider_variable
=
widgets
.
Text
()
def
update
(
**
w_dic
):
plt
.
figure
(
figsize
=
(
6
,
4.5
))
charges
=
[]
# charges and positions
for
i
in
range
(
int
(
output_slider_variable
.
value
)):
q
=
w_dic
[
str
(
i
)
+
"c"
]
charges
.
append
(
charge
(
q
,
[
w_dic
[
str
(
i
)
+
"x"
],
w_dic
[
str
(
i
)
+
"y"
]]))
# plot field lines
x0
,
x1
=-
2
,
2
y0
,
y1
=-
1.5
,
1.5
R
=
0.01
# loop over all charges
xs
=
[]
ys
=
[]
for
C
in
charges
:
# plot field lines starting in current charge
dt
=
0.8
*
R
if
C
.
q
<
0
:
dt
=-
dt
# loop over field lines starting in different directions
# around current charge
for
alpha
in
np
.
linspace
(
0
,
2
*
pi
*
15
/
16
,
16
):
r
=
ode
(
E_dir
)
r
.
set_integrator
(
'vode'
)
r
.
set_f_params
(
charges
)
x
=
[
C
.
pos
[
0
]
+
cos
(
alpha
)
*
R
]
y
=
[
C
.
pos
[
1
]
+
sin
(
alpha
)
*
R
]
r
.
set_initial_value
([
x
[
0
],
y
[
0
]],
0
)
while
r
.
successful
():
r
.
integrate
(
r
.
t
+
dt
)
x
.
append
(
r
.
y
[
0
])
y
.
append
(
r
.
y
[
1
])
hit_charge
=
False
# check if field line left drwaing area or ends in some charge
for
C2
in
charges
:
if
sqrt
((
r
.
y
[
0
]
-
C2
.
pos
[
0
])
**
2
+
(
r
.
y
[
1
]
-
C2
.
pos
[
1
])
**
2
)
<
R
:
hit_charge
=
True
if
hit_charge
or
(
not
(
x0
<
r
.
y
[
0
]
and
r
.
y
[
0
]
<
x1
))
or
\
(
not
(
y0
<
r
.
y
[
1
]
and
r
.
y
[
1
]
<
y1
)):
break
ax
=
plt
.
gca
()
as_xi
=
int
(
len
(
x
)
/
2
)
as_yi
=
int
(
len
(
y
)
/
2
)
a_s_x
=
x
[
as_xi
]
a_s_y
=
y
[
as_yi
]
a_e_x
=
x
[
as_xi
+
1
]
a_e_y
=
y
[
as_yi
+
1
]
if
(
C
.
q
>
0
):
ax
.
arrow
(
a_s_x
,
a_s_y
,
(
a_e_x
-
a_s_x
),
(
a_e_y
-
a_s_y
)
,
head_width
=
0.1
)
else
:
ax
.
arrow
(
a_s_x
,
a_s_y
,
-
(
a_e_x
-
a_s_x
),
-
(
a_e_y
-
a_s_y
)
,
head_width
=
0.1
)
plt
.
plot
(
x
,
y
,
color
=
"k"
)
xs
.
append
(
x
)
ys
.
append
(
y
)
# plot point charges
for
C
in
charges
:
if
C
.
q
>
0
:
plot
(
C
.
pos
[
0
],
C
.
pos
[
1
],
'bo'
,
ms
=
8
*
sqrt
(
C
.
q
))
if
C
.
q
<
0
:
plot
(
C
.
pos
[
0
],
C
.
pos
[
1
],
'ro'
,
ms
=
8
*
sqrt
(
-
C
.
q
))
Event Timeline
Log In to Comment