
PCSC

Vectorial ODEs

Daniele Hamm, Lionel Constantin

December 2019

This report describes a project that tackled the solution of initial value
problems for vectorial ODEs of the form:

y′(t) = A · y(t) + g(t).

where A is the right hand side (RHS) matrix and g(t) is the RHS function.
The following paragraphs discuss the main features of the library created for

this purpose and show how it can be used.

1 Compiling the program

The program files are compiled as a library called ODElibrary. It can be added
to any other C++ program by linking the library using cmake https://cmake.

org/. To compile the code, do in a terminal open in pcscproject :
cmake CMakeLists.txt
make
This will create executable for the tests and also a pcscproject executable, that
is calling the library.

1.1 External libraries needed

• Eigen : https://eigen.tuxfamily.org/index.php?title=Main_Page

• GoogleTests : https://github.com/google/googletest

2 Program execution flow and usage

The main function is called this way :
pcscproject inputfilename outputfilename
The argument inputfilename is mandatory, outputfilename is optional, if not
specified the output file is called ”solution.dat”. The input file contains all the
information necessary to perform the integration of the ODE problem at hand.
Specifically, it is organized by lines, each of which contains a string describing the

1



parameter and, separated by a space, its value/s. The input file parameters are
summarized and described in the following table. It’s important to remark that
initialValue, rhsFunction need a number of values equal to problemDimension;
rhsMatrix needs problemDimension2 values. In the output file, the first column

Parameter Meaning and values
solver 1.ForwardEuler,

2.RungeKutta,
3.AdamsBashforth,
4.AdamsMoulton,

5.BDF
initialTime Starting time of integration.
finalTime Ending time of integration.

numberOfSteps Integration steps to be
performed, integer >1

stepSize Discretization parameter
discretizationMethod Define discretization using:

0.numberOfSteps,
1.stepSize

problemDimension Dimension of ODE problem
initialValue Values of vector of initial

conditions, all on same line,
separated by a space.

rhsFunction Integers defining rhsFunction
g(t), all on same line,

separated by a space. gi(t):
0=0, 1=t, 2=cos(t).

Any combination can be
chosen.

rhsMatrix Values of rhs matrix, all on
same line, separated by a

space.
stepsMultistep 1-5, number of steps of

multistep methods. Ignored
if solver 6= 3, 4, 5

orderRK 1-4, order of RungeKutta
method to be applied.
Ignored if solver 6= 2

corresponds to the time, and the next columns to the approximation of the
solution.

The library ODElibrary was originally developed to be called from other
C++ files; the implementation of the input file reading was added at the end
and is not fully tested.

2



3 Features

3.1 Variety of solvers

Several solvers are implemented, both one-step and multistep, explicit and im-
plicit. Specifically, implementations for Forward Euler, Runge Kutta, Adams
Bashforth, Adams Moulton and BDF are provided.

3.2 Overall structure and its extensibility

The AbstractSolver class wraps up variables and methods common to all solvers.
A MultistepAbstractSolver class, daughter of AbstractSolver, contains the fea-
tures shared by the multistep methods implemented. A specific class for each
method is then implemented. The one-step methods are daughter classes of Ab-
stractSolver, the multistep ones of MultistepAbstractSolver. This class subdi-
vision allows to factor together all what is not method-dependent. Such feature
guarantees code maintainability, compactness and simple extensibility.

The methods are defined by how the update is performed at each integration
step. A purely virtual function step() is defined inside the AbstractSolver class,
and every solver overrides it providing a specific implementation for it. A solve()
method iterates over the necessary time steps, calling the proper step() function
at each iteration. The approximations of the exact solution computed at the
times defined by the discretization are written to an output stream specified by
the user, whose default is terminal. Any additional handling needed is managed
by the class of the specific solver being used. This fairly simple approach allows
the library to be easily extended to other integration methods.

3.3 Handling the inputs

When initializing a solver, several checks are performed on the parameters defin-
ing the integration to be carried on. Exceptions are thrown if invalid inputs are
detected. This should prevent some possible reasons of failure of the algorithms
and notify the user with error messages to help understanding what might be
going wrong.

The time step can be defined in two different ways, to guarantee more flexi-
bility: by setting a number of steps or by setting it explicitly. This may lead to
problems if the step size is not a submultiple of the integration interval. It is
therefore preferable to set the number of integration steps to be performed and
let the library handle the computation of the step size.

For any needed vectorial operation the external library Eigen is used. The
high quality and careful operation handling that it provides are exploited. Ad-
ditional checks are performed on the dimensions of the elements involved, raising
specific exceptions to help the user understand what was not properly set.

3



To generate the function from input in files, it was decided to use a simple
notation, where a number correspond to a function. This was done by having
a class that is able to generate std::function objects in function.cpp. Adding
a different function is easy, as one can create it and add it to the enum that
lists all the functions; adding it to the parser and getter methods following the
example of the already implemented functions completes the job.

4 Tests

Methods of the AbstractSolver mother class are tested multiple times, once per
each solver, to catch undesired modifications by the daughter classes.

Tests to check that good inputs are correctly set are provided, and also tests to
check that bad inputs throw specific exceptions.

The class RungeKutta has specific tests for the setting of the method order.
Another test checks if the error becomes smaller at the increase of the method’s
order.

Convergence of the methods is tested checking the accuracy of the approxi-
mation to the solution of a test problem corresponding to a mass attached to a
spring with dampening and forced oscillations.

5 TODO’s and perspectives

In section 3.3, it was discussed how to read the RHS function. Having a parser
that would read from file and create the function object would allow a very
general usage and more flexibility.

Better tests for convergence should be designed. In the tests the accuracy of the
approximate solution at the final value is checked, but this is not at all a strin-
gent condition for convergence. Plotting the exact solutions of the test problems
along with the approximated ones, the ”eye-test” tells there is convergence to
the exact solution, but something more sophisticated should be designed.

Some specific tests for the multistep methods should be designed, since some of
their specific functionalities are not tested by the testsolver, e.g. the method to
compute missing initial values in order to initialize the solver. Such methods
were tested by hand and they work, but a formal test should be designed and
implemented.

Tests of the inputs of the main should be written. In particular, a check that
the given parameters from the file are in the correct format.

4


