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Thermal fluctuations give rise to a number of noise processes in optical interferometers, limiting
the sensitivity of precision measurements ranging from the detection of gravitational waves to the
stabilization of lasers for optical atomic clocks. In optical cavities, thermal fluctuations of length
and refractive index result in cavity frequency noise, which can linearly couple to the optical field.
Here we describe a different kind of noise process, thermal intermodulation noise, produced from
the cavity frequency fluctuations by the inherent nonlinearity of optical susceptibility in laser-cavity
detuning. We study thermal intermodulation noise due to the Brownian motion of membrane
resonators in membrane-in-the-middle optomechanical cavities at room temperature, and show it to
be the dominant source of classical intracavity intensity fluctuations under nearly-resonant optical
excitation. We are able to operate at nominal quantum cooperativity equal to one an optomechanical
cavity with optical finesse F = 1.5×104 and a low effective mass soft clamped membrane mode with
Q = 4.× 107 as a mechanical oscillator. In this regime, the magnitude of thermal intermodulation
noise created by the mixing products of all membrane modes exceed the vacuum fluctuations by
tens of decibel, preventing the observation of pondermotive squeezing. The described noise process
is broadly relevant to optical cavities, in particular for which thermal frequency fluctuations are not
negligible compared to the cavity linewidth.

I. INTRODUCTION

Optical cavities are ubiquitous in physical experi-
ments. Their applications include precision interfero-
metric position measurements, an extraordinary exam-
ple of which is direct gravitational wave detection[1, 2],
stable frequency references[ref], and quantum experi-
ments, including cavity quantum electrodynamics[ref]
and optiomechanics[3]. Optical cavities have finite tem-
perature and therefore their frequencies exhibit funda-
mental thermal fluctuations due to the Brownian mo-
tion of mirror surfaces, thermorefractive and thermoelas-
tic fluctuations[4, 5] and other processes that modulate
the effective cavity length. These fluctuations predomi-
nantly manifest as excess phase noise in an optical field
resonant with the cavity. At the same time, the non-
linearity of cavity discrimination curve creates intensity
noise in the resonant field, which is especially pronounced
when the magnitude of frequency fluctuations is compa-
rable to the optical linewidth. This effect is known as
intermodulation noise as it mixes different harmonics of
the frequency noise. Technical intermodulation noise is
known to limit the stability of frequency standards[6] and
cavity-stabilized lasers[7, 8]. Here we report and study
thermal intermodulation noise (TIN) of fundamental ori-
gin.

The transduction of optical path difference into me-
asured signal in optical interferometers is periodic with
the period equal to wavelength, λ, and therefore inhe-
rently nonlinear. Similarly, an optical cavity transduces
the fluctuations of round-trip optical path, δx, to the
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modulation of intracavity field linearly only as far as the
accumulated phase shift, δφ, given by

δφ = Fδx/λ, (1)

is much smaller than one. Therefore high optical finesse
not only increases the resolution of a cavity as an op-
tical path sensor but also limits its dynamic range to
λ/F [9, 10]. This is a particularly important considera-
tion in experiments in which, on one hand, high finesse
is desirable to increase the strength of light-matter in-
teraction, and, on the other hand, stringent constraints
exist on the tolerable level of extraneous noise in both
quadratures of the optical field. Experiments on quan-
tum cavity optomechanics are among such.

Quantum cavity optomechanics studies aspects of in-
teraction between optical field and mechanical motion
such as position measurements and feedback control in
presence of measurement-backaction[11, 12], the prepara-
tion of mechanical ground[13–15], single-phonon[16] and
entangled[17] states and ponderomotive squeezing[18,
19]. In a handful of recent experiments, some quan-
tum optomechanical effects were demonstrated at room
temperature[20–24], limited due to high thermal noise
levels. Most of these experiments[22–24] operated in an
exotic regime when the radiation pressure spring excee-
ded the natural frequency of the mechanical oscillator by
two orders of magnitude. An alternative platform which
is considered promising for reaching the quantum regime
of optomechanical interaction at room temperature is
membrane in the middle system[25, 26]. It is predicted
that quantum-backaction dominated regime is reacheable
at microwatt input optical powers with the help of re-
cently developed high-stress Si3N4 membrane resonators
hosting high-Q and low mass soft-clamped modes[27, 28].
Yet, concomitant with this approach is a dense spectrum
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of membrane modes that equally couple to the optical
field and produce large thermal frequency fluctuations.

From the perspective of linear optomechanics, high
temperature only requires increasing the input optical
power to the point at which the optomechanical coupling
rate compensates for the mechanical decoherence and the
quantum cooperativity, Cq, reaches unity,

Cq =
4g2

κΓth
∼ 1. (2)

Here g is the loaded optomechanical coupling rate, κ is
the optical linewidth and Γth = Γmnth is the mechanical
thermal decoherence rate equal to the product of me-
chanical energy relaxation rate and phonon occupancy.
If thermal intermodulation noise is taken into account,
the effect of high temperature is more detrimental, as
high absolute magnitude of Brownian motion produces
strong extraneous classical noise. Unless the magnitude
of intermodulation noise is smaller than the optical va-
cuum fluctuations, no quadrature of the optical field is
quantum-limited.

The manuscript is structured as follows. In the begin-
ning we introduce a theoretical model of thermal intermo-
dulation noise due to the Brownian motion of mechanical
resonator in an optomechanical cavity. Next we present
measurements in low-cooperativity regime which reveal
an extraneous intensity noise source in a resonantly dri-
ven membrane-in-the-middle cavity. We show the noise
to match the expected from the model magnitude and
scaling with optical linewidth. Finally, employing a PnC
membrane with a low effective mass soft clamped mode
we conduct measurements the regime Cq ∼ 1, and study
the dependence of TIN on laser detuning, and find it to
be in excellent agreement with our theoretical prediction.
Moreover, we show that the intermodulation noise poses
a significant limitation for the observability of quantum
backaction-imprecision correlations in such system.

[Mention in the introduction the relation to quadratic
optomechanical transduction]

II. THEORY OF INTERMODULATION NOISE

We begin by presenting the theory of thermal intermo-
dulation noise in an optical cavity under the assumption
that the frequency fluctuations are slow compared to the
optical decay rate. We concentrate on the lowest-order,
i.e. quadratic, nonlinearity of the cavity detuning trans-
duction.

Consider an optical cavity with two-ports which is dri-
ven by a laser coupled to port one and the output from
port two of which is directly detected on a photodiode.
In the classical regime, i.e. neglecting vacuum fluctuati-
ons, the intracavity optical field, a, and the output field
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FIG. 1. a) Transduction of the oscillator motion to the phase
(upper panel) and amplitude (lower panel) of resonant intra-
cavity light. b) Spectra of linear (upper panel) and quadratic
(lower panel) position fluctuations of a multimode system. c)
Experimental setup.

sout,2 are found from the equations

da(t)

dt
=
(
i∆(t)− κ

2

)
a(t) +

√
κ1 sin,1, (3)

sout,2(t) = −√κ2a(t). (4)

where sin,1 is the constant coherent drive amplitude,
∆(t) = ωL − ωc(t) is the detuning from the cavity re-
sonance, modulated by the cavity frequency noise, and
κ1,2 are the coupling rates of the ports one and two. Ob-
serve that it follows from Eq. 4 that the intensity of the
detected light is directly proportional to the intracavity
intensity. In the fast cavity limit, when the optical field
adiabatically follows ∆(t), the intracavity field is found
as

a(t) = 2

√
η1

κ
L(ν(t)) sin,1, (5)

where we introduced for brevity the normalized detuning
ν = 2∆/κ, the cavity decay ratios η1,2 = κ1,2/κ and
Lorentzian susceptibility

L(ν) =
1

1− iν . (6)

Expanding L in Eq. 5 over small detuning fluctuations
δν around the mean value ν0 up to the second order we
find the intracavity field as

a = 2

√
η1

κ
L(ν0)(1 + iL(ν0)δν − L(ν0)2δν2)sin,1. (7)
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FIG. 2. a) Noise from a MIM cavity with laser detuned from resonance and on resonance. 1 mm square membrane, κ/2π = 26.6
MHz, g0/2π = 330 Hz. c) The low frequency part of data in a). b), d) and e) show measurements for MIM cavity with 2 mm
square membrane. b) dependence of the average RIN in 0.6−1.6 MHz band. b) Power sweep on the resonance with wavelength
837.7 nm, band ± one standard deviation around the mean is shaded gray. e) Green points — measured linewidths of different
optical resonances of MIM cavity, the dashed line is a guide to eye. Orange line — linewidth of an empty cavity with the same
length.

According to Eq. 7, the intracavity field is modulated by
the cavity frequency excursion, δν, and the frequency ex-
cursions squared, δν2. If δν(t) is a stationary Gaussian
noise process, like a thermal noise, the linear and qua-
dratic contributions are uncorrelated (despite clearly not
being independent). This is due to the fact that odd-
order correlations vanish for Gaussian noise,

〈δν(t)2δν(t+ τ)〉 = 0, (8)

where 〈...〉 is time-average, for arbitrary time delay τ .
Next, we consider the ptotodetected signal, which, up

to an unimportant conversion factor, equals to the inten-
sity of the output light and found as

I(t) = |sout,2(t)|2 ∝

|L(ν0)|2
(

1− 2ν0

1 + ν2
0

δν(t) +
3ν2

0 − 1

(1 + ν2
0)2

δν(t)2

)
. (9)

Notice, that there exist “magic” detunings, ν0 = ±1/
√

3,
at which quadratic frequency fluctuations do not contri-
bute to the detected signal and the intermodulation noise
vanishes to the leading order.

The spectrum of the detected signal is an incoherent
sum of linear term,

Sνν [ω] =

∫ ∞
−∞
〈δν(t)δν(t+ τ)〉eiωτdτ, (10)

and quadratic term, which for Gaussian noise can be
found using the Wick’s theorem[29]

〈δν(t)2δν(t+ τ)2〉 = 〈δν(t)2〉2 +2〈δν(t)δν(t+ τ)〉2, (11)

as

Sνν,2[ω] =

∫ ∞
−∞
〈δν(t)2δν(t+ τ)2〉eiωτdτ =

2π〈δν2〉2δ[ω] + 2× 1

2π

∫ ∞
−∞

Sνν [ω′]Sνν [ω − ω′]dω′,
(12)

where δ is delta-function.
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III. THERMOMECHANICAL
INTERMODULATION NOISE

In an optomechanical cavity the dominant source of
cavity frequency fluctuations is the Brownian motion of
mechanical modes coupled to the cavity,

δν(t) = 2
G

κ
x(t), (13)

where G = −∂ωc/∂x is the linear optomechanical cou-
pling constant, and x is the total membrane displace-
ment, the sum of independent contributions xn of diffe-
rent mechanical modes. The spectrum of Brownian fre-
quency noise is found as

Sνν [ω] = G2
∑
n

Sxx,n[ω], (14)

where Sxx,n[ω] are the displacement spectra of individual
membrane modes (see SI for more details). Applied to
Eq. 14, the convolution in Eq. 12 produces noise peaks at
sums and differences of mechanical resonance frequencies,
together with broadband background due to off-resonant
components of thermomechanical noise, which is illustra-
ted in Fig. 1b.

[Introduce quantum optomechanical parameters]
For the following discussion of quantum optomechani-

cal effects it is useful to introduce vacuum optomechani-
cal coupling rate of an individual mode

g0 = Gxzpf , (15)

where xzpf =
√
~/2meffΩm is the magnitude of zero point

fluctuations, Ωm is the mechanical resonance frequency
and meff is the effective mass.

The theory of Sec. II applies in this case at optical po-
wers sufficiently low so that the radiation-pressure media-
ted driving of the mechanical modes by the intermodula-
tion noise is negligible. If this condition is not satisfied,
radiation-pressure correlations may make the spectrum
more complex. [This is because the mechanical state be-
comes non-Gaussian[30]]

The nonlinearity of optical detuning transduction im-
prints on the optical field signal proportional to x2 in
way analogous, but not equivalent, to the nonlinear opto-
mechanical coupling, ∂2ωc/∂x

2. This effect was studied
previously[30–32]. Interestingly, it was observed[30] that
the cavity transduction commonly results in nonlinearity
that is orders of magnitude stronger than the highest
experimentally reported ∂2ωc/∂x

2, when compared by
the magnitude of the optical signal proportional to x2.
In the Supplementary Information it is shown that the
same is true for membrane in the middle cavity, in which
typical quadratic signals originating from the nonlinear
transduction and leading to intermodulation noise are by
the factor of rF (where r is membrane reflectivity) lar-
ger than the signals due to the nonlinear optomechanical
coupling, ∂2ωc/∂x

2.

IV. EXPERIMENTAL OBSERVATION OF
EXTRANEOUS AMPLITUDE NOISE

A startling manifestation of the optical transduction
nonlinearity is the emergence of thermal amplitude noise
in the field, output from an optomechanical cavity un-
der resonant optical excitation. In the conventional pic-
ture of linear optomechanics, intensity fluctuations of the
light that goes out of the cavity under such conditions is
shot noise limited or contains a small portion of thermal
signal transduced by dissipative coupling. In reality, ho-
wever, the intensity of light can contain of vast amount
of thermal intermodulation noise. We study this noise
systematically with rectangular membranes in the low-
cooperativity regime.

Our experimental setup consists of a membrane in the
middle cavity, composed of two supermirrors with the
transmission of 100 ppm and a 200 um-thick silicon chip
sandwiched between them that hosts a suspended high-
stress silicon nitride membrane (see Fig. 1c). The mem-
brane in the middle cavity is situated in a vacuum cham-
ber at room temperature, it is probed using the light form
a Ti:Sa or a tunable ECDL laser with wavelength around
840 nm. The Ti:Sa laser is used for noise measurements,
whereas the diode laser is used only for the characteri-
zation of optical linewidths. The light reflected from the
cavity is used for PDH locking, whereas the light exiting
the cavity from the second port and detected in direct
detection constitutes our measurement signal.

While reaching the quatum regime of optomechnaical
interaction requires engineering high-Q and low mass me-
chanical oscillators, we perform the characterization of
thermal intermodulation noise in low-cooperativity re-
gime using conventional 20 nm-thick square membranes.
In order to eliminate the influence of dynamic backaction,
while characterizing the noises we keep the residual pres-
sure in the vacuum chamber high, in the range 0.22±0.03
mBar, so that the quality factor of the fundamental mem-
brane mode is gas-damping limited to Q ∼ 103.

We start by presenting in Fig. 2a and c the observa-
tion of strong classical amplitude noise in the output from
the cavity subjected to resonant optical excitation. For
MIM cavity with 1mm × 1mm × 20nm membrane and
the input power of 5 µW the classical amplitude noise
rises above the shot noise level by about 25 dB at low
frequencies. In Fig. 2a, the noise level approaches shot
noise at high frequencies due to averaging of the mem-
brane mode profiles of the cavity waist (approx 25 µm in
our experiment).

Next we prove that the observed amplitude noise ori-
ginates from the nonlinearity of cavity transduction by
performing noise measurements across different optical
resonances of the same cavity and referring the ampli-
tude noise level to the value of vacuum optomechanical
coupling rate of the fundamental mode over the opti-
cal linewidth (see Fig. 2b). We use a 2mm × 2mm ×
20nm membrane for this measurement. While the power
spectral density of linearly transduced thermal fluctua-
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FIG. 3. Cavity-waist averaged position (top row) and posi-
tion squared (bottom row) noises produced by the modes of
20-nm Si3N4 rectangular membranes of different sizes. Red is
experimental data and blue is theoretical prediction. (War-
ning: two-sided theory spectra might be plotted, also the data
for 2 mm membrane should be replaced) [also need to remove
the cavity delay correction]

tions is ∝ (g0/κ)2, the spectral density of quadratically
transduced noise is ∝ (g0/κ)4, a trend that is perfectly
consistent with the data in Fig. 2b. By performing a
sweep of the input laser power on one of the resonances
(see Fig. 2d) we show that the intermodulation noise level
is power-independent and therefore the observed noise is
not related to the optomechanical dynamic backaction,
negligible for the operation in low vacuum.

The intermodulation noise observed in our experiment
is well reproduced by a theoretical model with no fitting
parameters.

In our experiment the effect of finite cavity response
time is small compared to the effect of geometric over-
lap, but we still take it into account. By using Eq. 9
and Eq. ?? we can find the spectrum of quadratically
tansduced fluctuations and the resulting amplitude noise
given the spectrum of cavity frequency fluctuations from
Eq. 14. We present a comparison between experimen-
tally measured linear and quadratic displacement noise
spectra and the ones calculated using the theoretical mo-
del in Fig. 3. The inputs for the model in this case are ex-
perimentally measured g0 of the fundamental membrane
mode, the optical linewidth κ, the membrane size and its
quality factors (for simplicity, assumed to be the same for
all the modes). While our model is not detailed enough
to reproduce precisely all the noise features, it well repro-
duces the overall level and the broadband envelope of the
intermodulation noise that were observed in experiment.

[Mention that the laser locking does not affect the in-
termodulation noise]

[Add discussion that the potential dissipative coupling
can only produce a much weaker effect on the intermo-
dulation noise]

[Mention that Sxx are compared in Fig3 because these
noises are intrinsic to membranes]

V. INTERMODULATION NOISE IN AN
OPTOMECHANICAL CAVITY WITH A
PHONONIC CRYSTAL MEMBRANE

The quantum regime of optomechanic interaction,
when the radiation pressure shot noise matches the ther-
mal force noise, is reached at the input laser power given
by

Pin =
πc

32~
λ

F2

SFF,th

4r2
, (16)

where it is assumed that the membrane is positioned al-
ong the cavity to maximize the linear optomechanical
coupling, λ is the optical wavelength, F is cavity finesse,
r is membrane reflectivity and SFF,th is the thermal force
noise spectral density given by[33]

SFF,th = 2kBTmeffΓm. (17)

The reduction of thermal noise is essential for reaching
the quantum backaction-dominated regime. Recently
thermal noise down to 55 aN/

√
Hz was demonstrated at

room temperature for soft-clamped modes localized in
stressed phononic crystal membrane nanoresonators[27,
28], owing to the simultaneous enhancement of quality
factor and the reduction of effective mass. Although si-
milar force noise levels are attainable with trampoline
resonators[34], the advantage of soft-clamped localized
modes is their high frequency, on the order of MHz, which
makes them less affected by classical laser noises. Even
lower thermal noise, down to 10 aN/

√
Hz, was demon-

strated for soft-clamped modes in nanobeam[35] resona-
tors, but nanobeams are not straightforward to combine
with Fabry-Perot cavities.

The integration of a membrane resonator with a Fabry-
Perot optical cavity generally involves tradeoffs for the
attainable thermal noise. Practical constraints need have
to be satisfied include maintaining a good overlap bet-
ween the mechanical mode and the optical cavity waist
and ensuring that the mechanical mode of interest is
spectrally well isolated from other membrane modes.

In Fig. 4a and b we present designs of PnC membra-
nes with defects optimized to create low effective mass
and high-Q soft-clamped modes. The phononic crystal is
made by a hexagon pattern of circular holes, which was
introduced in Ref. [27] and makes the simplest arrange-
ment that creates a complete phononic bandgap for the
flexural modes. The phononic crystal is terminated to
the frame at half the hole radii, which is necessary to
avoid the appearance of modes, localized at the mem-
brane edges—such modes have frequencies withing the
phononic bandgap and can contaminate the mechanical
spectrum.

Fig. 4a shows the microscope image of a resonator with
trampoline defect, featuring a particularly low meff = 1.9
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protocurrent noise spectrum detected with laser detuned from the cavity resonance, red—shot noise level. f) The variation of
the relative intensity noise of the light output from MIM cavity at bandgap frequencies with laser-cavity detuning. Blue dots
are experimental points, dashed line - single-parameter model fit.

ng at Ωm/2π = 0.853 kHz and Q = 1.65×108, correspon-

ding to the force noise of SFF,th = 15 aN/
√

Hz. Another
design, shown in Fig. 4d, is a 2 mm by 2 mm by 40
nm phononic crystal membrane with defect in the cen-
ter that was engineered to create a single mode localized
in the middle of phononic bandgap. This design featu-
res Q = 4.1 × 107 at 1.5 MHz and the effective mass of
2.2 ng, which results in predicted SFF,th = 200 aN/

√
Hz.

The overall membrane size in this case of the second de-
sign is kept small enough so that no other modes, in-
cluding in-plane ones, fall into the phononic bandgap.
The complete membrane designs is available from Zenodo
repository[36].

Using the membrane shown in Fig. 4d we were able
to reproducibly assemble membrane-in-the-middle cavi-
ties with single-photon cooperativity C0 = 0.1− 1 (when
operated in high vacuum, around 4 × 10−7 mBar in our
case) and round trip loss lower than 200 ppm. According
to the estimate provided by Eq. 16, in such cavities the
quantum backaction-dominated regime is expected to be
reached at the input powers of a few hundreds of µW.
Our experiment, however, shows that at these powers
the optical amplitude noise in such cavities is far from
being limited by the vacuum fluctuations of light due to
the intermodulation noise. The latter is big challenge for
the exploration of quantum aspects of radiation pressure
interaction at room temperature.

Fig. 4e shows the spectrum of light output from a mem-
brane in the middle cavity with length around 350 µm,

g0/2π = 360 Hz, κ/2π = 24.8 MHz and the intrinsic loss
rate around 100 ppm, close to the output coupling rate
from the two cavity mirrors having the transmission of
100 ppm each. The laser was detuned to the red from the
cavity resonance in this measurement, and the spectrum
of output fluctuations contains both the contribution of
thermomechanical noise linearly transduced by the cavity
detuning and the intermodulation noise due to the non-
linearity in G/κ. In particular, at frequencies within the
phononic bandgap the noise level is dominated by the in-
termodulation noise, which rises almost 40 dB above the
level of vacuum fluctuations (calibrated separately by di-
recting an auxiliary laser beam of the the same power on
the detector). The intermodulation origin of the noise in
the bandgap can be proven by considering the variation
of the noise level with laser detuning presented in Fig. 4f.
The laser power in this measurement was kept fixed to
30 µW, the cavity resonance wavelength is 840.1 nm.

We can understand the data in Fig. 4f using the general
formula for the photocurrent produced in the detection
of outgoing light (Eq. 9). Linear and quadratic position
fluctuations are transduced differently by the cavity, but
almost within the entire range of the detunings the qua-
dratically transduced fluctuations dominate. The excep-
tion is the vicinity of the detuning ∆ = κ/(2

√
3) at which

the quadratic transduction by the cavity is compensated
by the quadratic transduction by the nonlinearity of pho-
todetection (see SI for discussion). At this detuning the
in-bandgap noise level is consistent with the mirror noise.
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The overall variation of noise with the detuning can be
described by the formula

SRIN ∝
4ν2

0

(1 + ν2
0)2

S1 +
1

ν0

(3ν2
0 − 1)2

1 + ν2
0

S2, (18)

where S1 is the contribution of mirror noise, which is
independently calibrated, and S2 is the contribution of
quadratic noise that we use as a fitting parameter for
the dashed curve in Fig. 4f. Aside from the cavity trans-
duction, Eq. 18 takes into account the laser cooling of
mechanical modes by dynamic backaction (assuming that
the optical damping is much larger than the intrinsic li-
newidth, see SI for details). As can be seen from Fig. 4f,
Eq. 18 very well reproduces the experimental data.

VI. CONCLUSIONS AND OUTLOOK

The suppression of intermodulation noise can be done
by engineering mechanical resonators with lower multi-

mode thermal noise and fewer modes, or by using opto-
mechanical cavities with lower g0/κ.

As a potential way to suppress the intermodulation
noise we may suggest engineering the optical susceptibi-
lity in a way that the quadratic transduction vanishes,
for example, using double resonance.
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