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Cavity optomechanics in the weak coupling regime when single-photon coupling rate is much
smaller than the optical linewidth is conventionally described by linearly interacting optical and
mechanical modes. Yet dispersive optomechanical interaction is inherently nonlinear, and the ef-
fects of this nonlinearity can be far from negligible even for weakly coupled systems. The nonlinearity
of optomechanical interaction results in mixing of different frequency components of the thermo-
mechanical noise and the emergence of broadband thermal noise at frequencies and in the field
quadratures where it does not get transduced linearly. In order to illustrate this effect, we study
the noise properties of an optomechanical membrane in the middle cavity at room temperature.
Using an optical cavity with finesse F = 1.5× 104 and a low effective mass soft clamped mode with
Q = 4. × 107 as a mechanical oscillator we are able to operate at nominal quantum cooperativity
equal to one. In this regime, the amplitude fluctuations of intracavity light due to the thermal
intermodulation noise exceed the vacuum fluctuations by tens of dB, which makes it challenging to
observe quantum aspects of optomechanical interaction.

I. INTRODUCTION

Interferometric position measurements achieve excep-
tional resolution by transducing mechanical displace-
ments into optical phase shifts. The resolution can be
high enough so that the disturbance of mechanical mo-
tion due to the fundamental quantum back-action of me-
asurement becomes significant, and the optomechanical
interaction enters quantum regime. High-finesse optical
cavities is a key tool that increases the sensitivity of in-
terferometric measurements and enhances the strength of
optomechanical coupling by allowing the probe light to
interact with the mechanical system multiple times. Ho-
wever, an increase in the measurement sensitivity provi-
ded by a cavity comes at the price of a reduced dynamic
range, ∆xd, given by[1, 2]

∆xd = λ/F , (1)

where λ is optical wavelength and F is the cavity finesse.
Finite dynamic range results in nonlinear conversion of
mechanical displacements to the measured signal and can
significantly obscure the the measurement record even
when the total fluctuations are much smaller than the
cavity linewidth.

To the lowest order in the displacement over dynamic
range, nonlinearity manifests as the measurement of me-
chanical displacement squared. Such measurements po-
tentially have enticing applications in cavity optomecha-
nics, they could be used for the observation of phononic
jumps[3], phononic shot noise[4], and the creation of me-
chanical squeezed states[5] if the effects of linear measu-
rement backaction is possible to make small[6, 7]. Experi-
ments demonstrating quadratic optomechanical position
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measurements using genuine position-squared coupling[8]
up to date remain deeply in the classical regime. The
nonlinearity of displacement measurements can produce
quadratic measurement rates that are orders of magni-
tude higher[7], but this mechanism is inevitably accom-
panied by linear quantum backaction. Nonlinear trans-
duction of thermomechanical noise was observed in opto-
mechanical systems previously[7, 9] and it was suggested
that the nonlinearity of cavity transduction can be used
as a resource for engineering non-Gaussian states of the
mechanical oscillator[7].

Despite potentially being useful as a resource, the non-
linear transduction of mechanical motion introduces new
challenges in experiments exploiting the linear optome-
chanical interation, including the observation of pondero-
motive squeezing[10, 11] or ground state cooling of a me-
chanical oscillator[12–14]. Such experiments typically re-
quire the broadband fluctuations of intracavity light to
be limited by the vacuum fluctuations, whereas the non-
linearly transduced thermomechanical motion appears as
extraneous noise. In optomechanical systems it is typical
that multiple mechanical modes are coupled to the same
optical mode, even if only one mechanical mode is of in-
terest in the end, the experiments in our work are also in
this regime. For multimode systems the nonlinear con-
version of total thermal motion is dominated by intermo-
dulation products between different modes (as illustrated
in Fig. 1a-b), therefore we refer to the extraneous noise
created by this process as intermodulation noise.

The thermal intermodulation noise is particularly pro-
blematic for multimode optomechanical systems at high
temperature, for which the total magnitude of thermal
noise is large. From the perspective of linear optome-
chanics, the effect of elevated temperature can always be
compensated by increasing the optical power so that op-
tomechanical coupling rate compensates for the increased
mechanical decoherence. Moreover, it is often sufficient
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that the fluctuations of optical field are quantum limi-
ted in a small frequency band around the mechanical
resonance of interest. In presence of transduction nonli-
nearity, at the same value of quantum cooperativity the
added intermodulation noise is larger for high absolute
magnitudes of thermal noises. The intermodulation noise
could be one reason why the observation of quantum as-
pects of optomechanical interaction at room temperature
is very challenging and has only been achieved in a hand-
ful of experiments[15–19], most of which[17–19] operated
in an exotic regime when the radiation pressure spring
exceeds the natural frequency of the oscillator by two
orders of magnitude.

One platform that is considered promising for attai-
ning the quantum regime optomechanic interaction at
room temperature is membrane in the middle system[20,
21]. Utilizing recently developed high-Q and low mass
soft-clamped[25, 26] mechanical resonators, quantum-
backaction dominated regime is predicted to be reachea-
ble at microwatt input optical powers. Still, due to the
high density of mechanical modes in membrane resona-
tors this system is strongly limited by the intermodula-
tion noise.

The manuscript is structured as follows. In the begin-
ning we introduce a theoretical model of classical ther-
momechanical noise intermodulation in an optomecha-
nical cavity. Then we present measurements in low-
cooperativity regime which show that the intermodu-
lation noise is a major source of extraneous noise in a
membrane-in-the-middle experiment at room tempera-
ture. Finally, employing a PnC membrane with a low
effective mass soft clamped mode we conduct measure-
ments the regime Cq ∼ 1 and show that the intermodu-
lation noise poses a significant limitation for the observa-
bility of quantum backaction-imprecision correlations in
such system.

II. NONLINEAR TRANSDUCTION OF
OPTOMECHANICAL SIGNALS IN CLASSICAL

REGIME

The cavity-induced nonlinearity of optomechanical in-
teraction was studied in the works[7, 9, 23]. Nevertheless,
possibly because this effect is not readily apparent from
the optomechanic Hamiltonian, made it receive little at-
tention in the literature. This is despite the observation
that nonlinear transduction can produce signals, quadra-
tic in mechanic displacement, that are orders of magni-
tude stronger than those from the conventionally consi-
dered ∂2ωc/∂x

2 term[7]. Below we derive the classical
dynamics of optical field in an optomechanical cavity ta-
king into account terms that are quadratic in displace-
ment. We show that in membrane in the middle cavity
typical quadratic signals originating from the nonlinear
transduction are rF larger than the signals due to the
nonlinear optomechanical coupling, ∂2ωc/∂x

2.
We first show how transduction nonlinearity emerges
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FIG. 1. a) Transduction of the oscillator motion to the phase
(upper panel) and amplitude (lower panel) of resonant intra-
cavity light. b) Spectra of linear (upper panel) and quadratic
(lower panel) position fluctuations of a multimode system. c)
Experimental setup.

in a generic optomechanic system and evaluate the signal
strength. We consider a two-port optomechanic cavity
driven by laser from port 1, and assume fast cavity limit,
which corresponds to the cavity decay constant κ being
much larger than the frequency of mechanical fluctua-
tions. The classical dynamics of optical field inside the
cavity is described by the equation

da(t)

dt
=
(
i∆(t)− κ

2

)
a(t) +

√
κ1 s1,in, (2)

where ∆ = ωL − ωc is the laser detuning from the cavity
resonance, modulated by the mechanical motion. In adi-
abatic limit, if the cavity field adiabatically follows the
fluctuations of ∆(t), the intracavity field is found as

a(t) =
2√
κ

√
η1L(δ(t)) s1,in, (3)

where we introduced the normalized detuning δ = 2∆/κ,
the cavity decay ratio η1,2 = κ1,2/κ and Lorentzian
susceptibility

L(δ) =
1

1− iδ . (4)

Assuming the laser to be resonant with the cavity on
average and expanding L in small δ up to the second
order we get

a(t) =
2√
κ

√
η1(1− iδ(t)− δ(t)2)s1,in. (5)
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FIG. 2. a) Noise from a MIM cavity with laser detuned from resonance and on resonance. 1 mm square membrane, κ/2π = 26.6
MHz, g0/2π = 330 Hz. c) The low frequency part of data in a). b), d) and e) show measurements for MIM cavity with 2 mm
square membrane. b) dependence of the average RIN in 0.6−1.6 MHz band. b) Power sweep on the resonance with wavelength
837.7 nm, band ± one standard deviation around the mean is shaded gray. e) Green points — measured linewidths of different
optical resonances of MIM cavity, the dashed line is a guide to eye. Orange line — linewidth of an empty cavity with the same
length.

The fluctuations of δ due to the mechanical displacement
are given by

δ(t) ≈ G

κ
x(t) +

G2

2κ
x(t)2, (6)

where G = −∂ωc/∂x and G2 = −∂2ωc/∂
2x are the linear

and quadratic optomechanical coupling, respectively. So
overall we have

a(t) ≈ 2√
κ

√
η1(1− iδ(t)− δ(t)2)s1,in ≈

2√
κ

√
η1

(
1− iG

κ
x(t)−

((
G

κ

)2

+ i
G2

2κ

)
x(t)2

)
s1,in.

(7)

It is instructive to compare the magnitudes of the two
contributions to the prefactor of x(t)2. The typical value
for G (assuming the membrane to be approximately in
the cavity center) is

G ∼ 2r
ωc
L
, (8)

while the typical value for G2 is[20]

G2 ∼ 4
rω2

c

Lc
, (9)

so that the ratio of the two contributions can be evaluated
as (

G

κ

)2

/

(
G2

2κ

)
∼ Fr. (10)

As the cavity finesse F is typically large, on on the order
of 103 to 105, and the membrane reflectivity r is between
0.1 and 0.5, we conclude that linear optomechanical cou-
pling needs to extremely well suppressed in order for the
quadratic coupling G2 to play any role. In the following
we neglect G2.

Next we calculate the spectrum or photocurrent fluc-
tuations in the setting relevant to our experiment, when
the laser is coupled to the cavity from port one and the
output of the second port is detected by a photodiode.
For the output field we have

s2,out(t) = −2
√
η1η2L(δ(t))s1,in, (11)
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and for the photocurrent in direct detection

I(t) = |s2,out(t)|2 ∝ |L(δ0)|2×(
1− 2δ0

1 + δ2
0

G

κ
x(t) +

3δ2
0 − 1

(1 + δ2
0)2

(
G

κ

)2

x(t)2

)
, (12)

where δ0 = ∆0/κ is the average laser detuning from the
resonance.

The frequency spectrum of the quadratic component of
the photocurrent signal can be found using Wick’s theo-
rem

S2[ω] =

∫ ∞
−∞
〈x(t)2x(t+ τ)2〉eiωτdτ =

2π〈x2〉2d[ω] + 2× 1

2π

∫ ∞
−∞

S1[ω′]S1[ω − ω′]dω′, (13)

where d[ω] is delta-function. If the cavity transduces the
motion of multiple mechanical modes, the convolution
results the appearance of frequency components at sum
and difference frequencies, as illustrated in Fig. 1b. The
quadratic spectrum of such system is dominated by in-
termodulation noise.

III. EXPERIMENTAL OBSERVATION OF
EXTRANEOUS AMPLITUDE NOISE

A startling manifestation of the optical transduction
nonlinearity is the emergence of thermal amplitude noise
in the field, output from an optomechanical cavity un-
der resonant optical excitation. In the conventional pic-
ture of linear optomechanics, intensity fluctuations of the
light that goes out of the cavity under such conditions is
shot noise limited or contains a small portion of thermal
signal transduced by dissipative coupling. In reality, ho-
wever, the intensity of light can contain of vast amount
of thermal intermodulation noise. We study this noise
systematically with rectangular membranes in the low-
cooperativity regime.

Our experimental setup consists of a membrane in the
middle cavity, composed of two supermirrors with the
transmission of 100 ppm and a 200 um-thick silicon chip
sandwiched between them that hosts a suspended high-
stress silicon nitride membrane (see Fig. 1c). The mem-
brane in the middle cavity is situated in a vacuum cham-
ber at room temperature, it is probed using the light form
a Ti:Sa or a tunable ECDL laser with wavelength around
840 nm. The Ti:Sa laser is used for noise measurements,
whereas the diode laser is used only for the characteri-
zation of optical linewidths. The light reflected from the
cavity is used for PDH locking, whereas the light exiting
the cavity from the second port and detected in direct
detection constitutes our measurement signal.

While reaching the quatum regime of optomechnaical
interaction requires engineering high-Q and low mass me-
chanical oscillators, we perform the characterization of
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FIG. 3. Cavity-waist averaged position (top row) and posi-
tion squared (bottom row) noises produced by the modes of
20-nm Si3N4 rectangular membranes of different sizes. Red is
experimental data and blue is theoretical prediction. (War-
ning: two-sided theory spectra might be plotted, also the data
for 2 mm membrane should be replaced)

thermal intermodulation noise in low-cooperativity re-
gime using conventional 20 nm-thick square membranes.
In order to eliminate the influence of dynamic backaction,
while characterizing the noises we keep the residual pres-
sure in the vacuum chamber high, in the range 0.22±0.03
mBar, so that the quality factor of the fundamental mem-
brane mode is gas-damping limited to Q ∼ 103.

We start by presenting in Fig. 2a and c the observa-
tion of strong classical amplitude noise in the output from
the cavity subjected to resonant optical excitation. For
MIM cavity with 1mm × 1mm × 20nm membrane and
the input power of 5 µW the classical amplitude noise
rises above the shot noise level by about 25 dB at low
frequencies. In Fig. 2a, the noise level approaches shot
noise at high frequencies due to averaging of the mem-
brane mode profiles of the cavity waist (approx 25 µm in
our experiment).

Next we prove that the observed amplitude noise ori-
ginates from the nonlinearity of cavity transduction by
performing noise measurements across different optical
resonances of the same cavity and referring the ampli-
tude noise level to the value of vacuum optomechanical
coupling rate of the fundamental mode over the opti-
cal linewidth (see Fig. 2b). We use a 2mm × 2mm ×
20nm membrane for this measurement. While the power
spectral density of linearly transduced thermal fluctua-
tions is ∝ (g0/κ)2, the spectral density of quadratically
transduced noise is ∝ (g0/κ)4, a trend that is perfectly
consistent with the data in Fig. 2b. By performing a
sweep of the input laser power on one of the resonances
(see Fig. 2d) we show that the intermodulation noise level
is power-independent and therefore the observed noise is
not related to the optomechanical dynamic backaction,
negligible for the operation in low vacuum.
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The intermodulation noise observed in our experiment
is well reproduced by a theoretical model with no fitting
parameters. The frequency noise produced by the ther-
mal membrane motion in a MIM cavity can be found
as

S∆[ω] = G2
∑
n

A2
nSx,n[ω], (14)

where Sx,n[ω] are the displacement noises of individual
membrane modes and An are the factors characterizing
the signal low-pass filtering due to the geometric overlap
of mechanical mode profiles with the optical mode and
due to the finite cavity response time. In our experiment
the effect of finite cavity response time is small compa-
red to the effect of geometric overlap, but we still take
it into account. By using Eq. 12 and Eq. 13 we can find
the spectrum of quadratically tansduced fluctuations and
the resulting amplitude noise given the spectrum of ca-
vity frequency fluctuations from Eq. 14. We present a
comparison between experimentally measured linear and
quadratic displacement noise spectra and the ones calcu-
lated using the theoretical model in Fig. 3. The inputs for
the model in this case are experimentally measured g0 of
the fundamental membrane mode, the optical linewidth
κ, the membrane size and its quality factors (for simpli-
city, assumed to be the same for all the modes). While
our model is not detailed enough to reproduce precisely
all the noise features, it well reproduces the overall level
and the broadband envelope of the intermodulation noise
that were observed in experiment.

IV. INTERMODULATION NOISE IN AN
OPTOMECHANICAL CAVITY WITH A
PHONONIC CRYSTAL MEMBRANE

The quantum regime of optomechanic interaction,
when the radiation pressure shot noise matches the ther-
mal force noise, is reached at the input laser power given
by

Pin =
πc

32~
λ

F2

SFF,th

4r2
, (15)

where it is assumed that the membrane is positioned al-
ong the cavity to maximize the linear optomechanical
coupling, λ is the optical wavelength, F is cavity finesse,
r is membrane reflectivity and SFF,th is the thermal force
noise spectral density given by[24]

SFF,th = 2kBTmeffΓm. (16)

The reduction of thermal noise is essential for reaching
the quantum backaction-dominated regime. Recently
thermal noise down to 55 aN/

√
Hz was demonstrated at

room temperature for soft-clamped modes localized in
stressed phononic crystal membrane nanoresonators[25,
26], owing to the simultaneous enhancement of quality
factor and the reduction of effective mass. Although si-
milar force noise levels are attainable with trampoline

resonators[22], the advantage of soft-clamped localized
modes is their high frequency, on the order of MHz, which
makes them less affected by classical laser noises. Even
lower thermal noise, down to 10 aN/

√
Hz, was demon-

strated for soft-clamped modes in nanobeam[27] resona-
tors, but nanobeams are not straightforward to combine
with Fabry-Perot cavities.

The integration of a membrane resonator with a Fabry-
Perot optical cavity generally involves tradeoffs for the
attainable thermal noise. Practical constraints need have
to be satisfied include maintaining a good overlap bet-
ween the mechanical mode and the optical cavity waist
and ensuring that the mechanical mode of interest is
spectrally well isolated from other membrane modes.

In Fig. 4a and b we present designs of PnC membra-
nes with defects optimized to create low effective mass
and high-Q soft-clamped modes. The phononic crystal is
made by a hexagon pattern of circular holes, which was
introduced in Ref. [25] and makes the simplest arrange-
ment that creates a complete phononic bandgap for the
flexural modes. The phononic crystal is terminated to
the frame at half the hole radii, which is necessary to
avoid the appearance of modes, localized at the mem-
brane edges—such modes have frequencies withing the
phononic bandgap and can contaminate the mechanical
spectrum.

Fig. 4a shows the microscope image of a resonator with
trampoline defect, featuring a particularly low meff = 1.9
ng at Ωm/2π = 0.853 kHz and Q = 1.65×108, correspon-

ding to the force noise of SFF,th = 15 aN/
√

Hz. Another
design, shown in Fig. 4d, is a 2 mm by 2 mm by 40
nm phononic crystal membrane with defect in the cen-
ter that was engineered to create a single mode localized
in the middle of phononic bandgap. This design featu-
res Q = 4.1 × 107 at 1.5 MHz and the effective mass of
2.2 ng, which results in predicted SFF,th = 200 aN/

√
Hz.

The overall membrane size in this case of the second de-
sign is kept small enough so that no other modes, in-
cluding in-plane ones, fall into the phononic bandgap.
The complete membrane designs is available from Zenodo
repository[28].

Using the membrane shown in Fig. 4d we were able
to reproducibly assemble membrane-in-the-middle cavi-
ties with single-photon cooperativity C0 = 0.1− 1 (when
operated in high vacuum, around 4 × 10−7 mBar in our
case) and round trip loss lower than 200 ppm. According
to the estimate provided by Eq. 15, in such cavities the
quantum backaction-dominated regime is expected to be
reached at the input powers of a few hundreds of µW.
Our experiment, however, shows that at these powers
the optical amplitude noise in such cavities is far from
being limited by the vacuum fluctuations of light due to
the intermodulation noise. The latter is big challenge for
the exploration of quantum aspects of radiation pressure
interaction at room temperature.

Fig. 4e shows the spectrum of light output from a mem-
brane in the middle cavity with length around 350 µm,
g0/2π = 360 Hz, κ/2π = 24.8 MHz and the intrinsic loss
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are experimental points, dashed line - single-parameter model fit.

rate around 100 ppm, close to the output coupling rate
from the two cavity mirrors having the transmission of
100 ppm each. The laser was detuned to the red from the
cavity resonance in this measurement, and the spectrum
of output fluctuations contains both the contribution of
thermomechanical noise linearly transduced by the cavity
detuning and the intermodulation noise due to the non-
linearity in G/κ. In particular, at frequencies within the
phononic bandgap the noise level is dominated by the in-
termodulation noise, which rises almost 40 dB above the
level of vacuum fluctuations (calibrated separately by di-
recting an auxiliary laser beam of the the same power on
the detector). The intermodulation origin of the noise in
the bandgap can be proven by considering the variation
of the noise level with laser detuning presented in Fig. 4f.
The laser power in this measurement was kept fixed to
30 µW, the cavity resonance wavelength is 840.1 nm.

We can understand the data in Fig. 4f using the general
formula for the photocurrent produced in the detection
of outgoing light (Eq. 12). Linear and quadratic position
fluctuations are transduced differently by the cavity, but
almost within the entire range of the detunings the qua-
dratically transduced fluctuations dominate. The excep-

tion is the vicinity of the detuning ∆ = κ/(2
√

3) at which
the quadratic transduction by the cavity is compensated
by the quadratic transduction by the nonlinearity of pho-
todetection (see SI for discussion). At this detuning the
in-bandgap noise level is consistent with the mirror noise.
The overall variation of noise with the detuning can be
described by the formula

SRIN ∝
4δ2

0

(1 + δ2
0)2

S1 +
1

δ0

(3δ2
0 − 1)2

1 + δ2
0

S2, (17)

where S1 is the contribution of mirror noise, which is
independently calibrated, and S2 is the contribution of
quadratic noise that we use as a fitting parameter for
the dashed curve in Fig. 4f. Aside from the cavity trans-
duction, Eq. 17 takes into account the laser cooling of
mechanical modes by dynamic backaction (assuming that
the optical damping is much larger than the intrinsic li-
newidth, see SI for details). As can be seen from Fig. 4f,
Eq. 17 very well reproduces the experimental data.
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