Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F122386804
basicnet.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Jul 17, 13:58
Size
2 KB
Mime Type
text/x-c
Expires
Sat, Jul 19, 13:58 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27476814
Attached To
R9868 DeepHealth_UC13_seizure_detection
basicnet.cpp
View Options
#include <eddl/apis/eddl.h>
#include <eddl/apis/eddlT.h>
#include <eddl/tensor/tensor.h>
#include <string>
#include "basicnet.h"
#define NB_CHNS 4
#define L2_K 0.1
#define L2_B 0.1
#define L2_A 0.0
#define DROPOUT_RATE 0.5
BasicNet::BasicNet()
{
using namespace eddl;
layer in_ = Input({1, NB_CHNS, 1280});
layer l = in_;
l = L2(GlorotUniform(Conv(l, 16, {3, 5}, {1,1}, "same")), L2_K);
l = BatchNormalization(l, 0.99, 0.001);
l = Activation(l, "relu");
l = MaxPool(l, {1,2}, {1,2}, "same");
l = L2(GlorotUniform(Conv(l, 32, {3, 3}, {1,1}, "same")), L2_K);
l = BatchNormalization(l, 0.99, 0.001);
l = Activation(l, "relu");
l = MaxPool(l, {1,2}, {1,2}, "same");
l = L2(GlorotUniform(Conv(l, 32, {3, 3}, {2,2}, "same")), L2_K);
l = BatchNormalization(l, 0.99, 0.001);
l = Activation(l, "relu");
l = Dropout(l, DROPOUT_RATE);
l = Flatten(l);
// l = Dense(l, 64, kernel_initialiser='glorot_uniform', bias_initialiser='zeros', kernel_regularizer=L2(l2_k), bias_regularizer=L2(l2_b));
l = L2(GlorotUniform(Dense(l, 64)), L2_K);
l = Activation(l, "relu");
l = Dropout(l, DROPOUT_RATE);
// l = Dense(l, 1, kernel_initialiser='glorot_uniform', bias_initialiser='zeros');
l = GlorotUniform(Dense(l, 2));
l = Activation(l, "softmax");
layer out_ = l;
net = Model({in_}, {out_});
build(net,
sgd(0.01, 0.9, 0.0, true),
{"cross_entropy"},
{"categorical_accuracy"},
CS_CPU(4, "full_mem"));
summary(net);
}
void BasicNet::fit(Tensor* x_train, Tensor* y_train, Tensor* x_val, Tensor* y_val, int batch_size, int epochs, float learning_rate)
{
eddl::setlr(net, {learning_rate});
for(int e=0; e<epochs; e++)
{
eddl::fit(net, {x_train}, {y_train}, batch_size, 1);
eddl::evaluate(net, {x_val}, {y_val});
}
}
void BasicNet::evaluate(Tensor* x, Tensor* y)
{
eddl::evaluate(net, {x}, {y});
}
void BasicNet::save(std::string file_name)
{
eddl::save(net, file_name);
}
void BasicNet::load(std::string file_name)
{
eddl::load(net, file_name);
}
Event Timeline
Log In to Comment