Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92055674
aka_array.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 16, 23:52
Size
15 KB
Mime Type
text/x-c++
Expires
Mon, Nov 18, 23:52 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22347373
Attached To
rAKA akantu
aka_array.hh
View Options
/**
* @file aka_array.hh
*
* @author Till Junge <till.junge@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Fri Jan 22 2016
*
* @brief Array container for Akantu
* This container differs from the std::vector from the fact it as 2 dimensions
* a main dimension and the size stored per entries
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_VECTOR_HH__
#define __AKANTU_VECTOR_HH__
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
/* -------------------------------------------------------------------------- */
#include <typeinfo>
#include <vector>
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/// class that afford to store vectors in static memory
class
ArrayBase
{
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public
:
ArrayBase
(
ID
id
=
""
);
virtual
~
ArrayBase
();
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public
:
/// get the amount of space allocated in bytes
inline
UInt
getMemorySize
()
const
;
/// set the size to zero without freeing the allocated space
inline
void
empty
();
/// function to print the containt of the class
virtual
void
printself
(
std
::
ostream
&
stream
,
int
indent
=
0
)
const
;
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public
:
/// Get the real size allocated in memory
AKANTU_GET_MACRO
(
AllocatedSize
,
allocated_size
,
UInt
);
/// Get the Size of the Array
AKANTU_GET_MACRO
(
Size
,
size
,
UInt
);
/// Get the number of components
AKANTU_GET_MACRO
(
NbComponent
,
nb_component
,
UInt
);
/// Get the name of th array
AKANTU_GET_MACRO
(
ID
,
id
,
const
ID
&
);
/// Set the name of th array
AKANTU_SET_MACRO
(
ID
,
id
,
const
ID
&
);
// AKANTU_GET_MACRO(Tag, tag, const std::string &);
// AKANTU_SET_MACRO(Tag, tag, const std::string &);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected
:
/// id of the vector
ID
id
;
/// the size allocated
UInt
allocated_size
{
0
};
/// the size used
UInt
size
{
0
};
/// number of components
UInt
nb_component
{
1
};
/// size of the stored type
UInt
size_of_type
{
0
};
};
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
bool
is_scal
>
class
Array
:
public
ArrayBase
{
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public
:
using
value_type
=
T
;
using
reference
=
value_type
&
;
using
pointer_type
=
value_type
*
;
using
const_reference
=
const
value_type
&
;
/// Allocation of a new vector
inline
Array
(
UInt
size
=
0
,
UInt
nb_component
=
1
,
const
ID
&
id
=
""
);
/// Allocation of a new vector with a default value
Array
(
UInt
size
,
UInt
nb_component
,
const
value_type
def_values
[],
const
ID
&
id
=
""
);
/// Allocation of a new vector with a default value
Array
(
UInt
size
,
UInt
nb_component
,
const_reference
value
,
const
ID
&
id
=
""
);
/// Copy constructor (deep copy if deep=true)
Array
(
const
Array
<
value_type
,
is_scal
>
&
vect
,
bool
deep
=
true
,
const
ID
&
id
=
""
);
#ifndef SWIG
/// Copy constructor (deep copy)
Array
(
const
std
::
vector
<
value_type
>
&
vect
);
#endif
inline
~
Array
()
override
;
Array
&
operator
=
(
const
Array
&
a
)
{
/// this is to let STL allocate and copy arrays in the case of
/// std::vector::resize
AKANTU_DEBUG_ASSERT
(
this
->
size
==
0
,
"Cannot copy akantu::Array"
);
return
const_cast
<
Array
&>
(
a
);
}
/* ------------------------------------------------------------------------ */
/* Iterator */
/* ------------------------------------------------------------------------ */
/// \todo protected: does not compile with intel check why
public
:
template
<
class
R
,
class
IR
=
R
,
bool
issame
=
is_same
<
IR
,
T
>::
value
>
class
iterator_internal
;
public
:
/* ------------------------------------------------------------------------ */
/* ------------------------------------------------------------------------ */
template
<
typename
R
=
T
>
class
const_iterator
;
template
<
typename
R
=
T
>
class
iterator
;
/* ------------------------------------------------------------------------ */
/// iterator for Array of nb_component = 1
using
scalar_iterator
=
iterator
<
T
>
;
/// const_iterator for Array of nb_component = 1
using
const_scalar_iterator
=
const_iterator
<
T
>
;
/// iterator rerturning Vectors of size n on entries of Array with
/// nb_component = n
using
vector_iterator
=
iterator
<
Vector
<
T
>>
;
/// const_iterator rerturning Vectors of n size on entries of Array with
/// nb_component = n
using
const_vector_iterator
=
const_iterator
<
Vector
<
T
>>
;
/// iterator rerturning Matrices of size (m, n) on entries of Array with
/// nb_component = m*n
using
matrix_iterator
=
iterator
<
Matrix
<
T
>>
;
/// const iterator rerturning Matrices of size (m, n) on entries of Array with
/// nb_component = m*n
using
const_matrix_iterator
=
const_iterator
<
Matrix
<
T
>>
;
/* ------------------------------------------------------------------------ */
/// Get an iterator that behaves like a pointer T * to the first entry
inline
scalar_iterator
begin
();
/// Get an iterator that behaves like a pointer T * to the end of the Array
inline
scalar_iterator
end
();
/// Get a const_iterator to the beginging of an Array of scalar
inline
const_scalar_iterator
begin
()
const
;
/// Get a const_iterator to the end of an Array of scalar
inline
const_scalar_iterator
end
()
const
;
/// Get a scalar_iterator on the beginning of the Array considered of shape
/// (new_size)
inline
scalar_iterator
begin_reinterpret
(
UInt
new_size
);
/// Get a scalar_iterator on the end of the Array considered of shape
/// (new_size)
inline
scalar_iterator
end_reinterpret
(
UInt
new_size
);
/// Get a const_scalar_iterator on the beginning of the Array considered of
/// shape (new_size)
inline
const_scalar_iterator
begin_reinterpret
(
UInt
new_size
)
const
;
/// Get a const_scalar_iterator on the end of the Array considered of shape
/// (new_size)
inline
const_scalar_iterator
end_reinterpret
(
UInt
new_size
)
const
;
/* ------------------------------------------------------------------------ */
/// Get a vector_iterator on the beginning of the Array
inline
vector_iterator
begin
(
UInt
n
);
/// Get a vector_iterator on the end of the Array
inline
vector_iterator
end
(
UInt
n
);
/// Get a vector_iterator on the beginning of the Array
inline
const_vector_iterator
begin
(
UInt
n
)
const
;
/// Get a vector_iterator on the end of the Array
inline
const_vector_iterator
end
(
UInt
n
)
const
;
/// Get a vector_iterator on the begining of the Array considered of shape
/// (new_size, n)
inline
vector_iterator
begin_reinterpret
(
UInt
n
,
UInt
new_size
);
/// Get a vector_iterator on the end of the Array considered of shape
/// (new_size, n)
inline
vector_iterator
end_reinterpret
(
UInt
n
,
UInt
new_size
);
/// Get a const_vector_iterator on the begining of the Array considered of
/// shape (new_size, n)
inline
const_vector_iterator
begin_reinterpret
(
UInt
n
,
UInt
new_size
)
const
;
/// Get a const_vector_iterator on the end of the Array considered of shape
/// (new_size, n)
inline
const_vector_iterator
end_reinterpret
(
UInt
n
,
UInt
new_size
)
const
;
/* ------------------------------------------------------------------------ */
/// Get a matrix_iterator on the begining of the Array (Matrices of size (m,
/// n))
inline
matrix_iterator
begin
(
UInt
m
,
UInt
n
);
/// Get a matrix_iterator on the end of the Array (Matrices of size (m, n))
inline
matrix_iterator
end
(
UInt
m
,
UInt
n
);
/// Get a const_matrix_iterator on the begining of the Array (Matrices of size
/// (m, n))
inline
const_matrix_iterator
begin
(
UInt
m
,
UInt
n
)
const
;
/// Get a const_matrix_iterator on the end of the Array (Matrices of size (m,
/// n))
inline
const_matrix_iterator
end
(
UInt
m
,
UInt
n
)
const
;
/// Get a matrix_iterator on the begining of the Array considered of shape
/// (new_size, m*n)
inline
matrix_iterator
begin_reinterpret
(
UInt
m
,
UInt
n
,
UInt
size
);
/// Get a matrix_iterator on the end of the Array considered of shape
/// (new_size, m*n)
inline
matrix_iterator
end_reinterpret
(
UInt
m
,
UInt
n
,
UInt
size
);
/// Get a const_matrix_iterator on the begining of the Array considered of
/// shape (new_size, m*n)
inline
const_matrix_iterator
begin_reinterpret
(
UInt
m
,
UInt
n
,
UInt
size
)
const
;
/// Get a const_matrix_iterator on the end of the Array considered of shape
/// (new_size, m*n)
inline
const_matrix_iterator
end_reinterpret
(
UInt
m
,
UInt
n
,
UInt
size
)
const
;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public
:
/// append a tuple of size nb_component containing value
inline
void
push_back
(
const_reference
value
);
/// append a vector
// inline void push_back(const value_type new_elem[]);
/// append a Vector or a Matrix
template
<
template
<
typename
>
class
C
>
inline
void
push_back
(
const
C
<
T
>
&
new_elem
);
/// append the value of the iterator
template
<
typename
Ret
>
inline
void
push_back
(
const
iterator
<
Ret
>
&
it
);
/// erase the value at position i
inline
void
erase
(
UInt
i
);
/// ask Nico, clarify
template
<
typename
R
>
inline
iterator
<
R
>
erase
(
const
iterator
<
R
>
&
it
);
/// change the size of the Array
virtual
void
resize
(
UInt
size
);
/// change the size of the Array and initialize the values
virtual
void
resize
(
UInt
size
,
const
T
&
val
);
/// change the number of components by interlacing data
/// @param multiplicator number of interlaced components add
/// @param block_size blocks of data in the array
/// Examaple for block_size = 2, multiplicator = 2
/// array = oo oo oo -> new array = oo nn nn oo nn nn oo nn nn
void
extendComponentsInterlaced
(
UInt
multiplicator
,
UInt
stride
);
/// search elem in the vector, return the position of the first occurrence or
/// -1 if not found
Int
find
(
const_reference
elem
)
const
;
/// @see Array::find(const_reference elem) const
Int
find
(
T
elem
[])
const
;
/// @see Array::find(const_reference elem) const
template
<
template
<
typename
>
class
C
>
inline
Int
find
(
const
C
<
T
>
&
elem
);
/// set all entries of the array to 0
inline
void
clear
()
{
std
::
fill_n
(
values
,
size
*
nb_component
,
T
());
}
/// set all entries of the array to the value t
/// @param t value to fill the array with
inline
void
set
(
T
t
)
{
std
::
fill_n
(
values
,
size
*
nb_component
,
t
);
}
/// set all tuples of the array to a given vector or matrix
/// @param vm Matrix or Vector to fill the array with
template
<
template
<
typename
>
class
C
>
inline
void
set
(
const
C
<
T
>
&
vm
);
/// Append the content of the other array to the current one
void
append
(
const
Array
<
T
>
&
other
);
/// copy another Array in the current Array, the no_sanity_check allows you to
/// force the copy in cases where you know what you do with two non matching
/// Arrays in terms of n
void
copy
(
const
Array
<
T
,
is_scal
>
&
other
,
bool
no_sanity_check
=
false
);
/// give the address of the memory allocated for this vector
T
*
storage
()
const
{
return
values
;
};
/// function to print the containt of the class
void
printself
(
std
::
ostream
&
stream
,
int
indent
=
0
)
const
override
;
protected
:
/// perform the allocation for the constructors
void
allocate
(
UInt
size
,
UInt
nb_component
=
1
);
/// resize initializing with uninitialized_fill if fill is set
void
resizeUnitialized
(
UInt
new_size
,
bool
fill
,
const
T
&
val
=
T
());
/* ------------------------------------------------------------------------ */
/* Operators */
/* ------------------------------------------------------------------------ */
public
:
/// substraction entry-wise
Array
<
T
,
is_scal
>
&
operator
-=
(
const
Array
<
T
,
is_scal
>
&
other
);
/// addition entry-wise
Array
<
T
,
is_scal
>
&
operator
+=
(
const
Array
<
T
,
is_scal
>
&
other
);
/// multiply evry entry by alpha
Array
<
T
,
is_scal
>
&
operator
*=
(
const
T
&
alpha
);
/// check if the array are identical entry-wise
bool
operator
==
(
const
Array
<
T
,
is_scal
>
&
other
)
const
;
/// @see Array::operator==(const Array<T, is_scal> & other) const
bool
operator
!=
(
const
Array
<
T
,
is_scal
>
&
other
)
const
;
/// return a reference to the j-th entry of the i-th tuple
inline
reference
operator
()(
UInt
i
,
UInt
j
=
0
);
/// return a const reference to the j-th entry of the i-th tuple
inline
const_reference
operator
()(
UInt
i
,
UInt
j
=
0
)
const
;
/// return a reference to the ith component of the 1D array
inline
reference
operator
[](
UInt
i
);
/// return a const reference to the ith component of the 1D array
inline
const_reference
operator
[](
UInt
i
)
const
;
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected
:
/// array of values
T
*
values
;
// /!\ very dangerous
};
/* -------------------------------------------------------------------------- */
/* Inline Functions Array<T, is_scal> */
/* -------------------------------------------------------------------------- */
template
<
typename
T
,
bool
is_scal
>
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
stream
,
const
Array
<
T
,
is_scal
>
&
_this
)
{
_this
.
printself
(
stream
);
return
stream
;
}
/* -------------------------------------------------------------------------- */
/* Inline Functions ArrayBase */
/* -------------------------------------------------------------------------- */
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
stream
,
const
ArrayBase
&
_this
)
{
_this
.
printself
(
stream
);
return
stream
;
}
}
// namespace akantu
#include "aka_array_tmpl.hh"
#include "aka_types.hh"
#endif
/* __AKANTU_VECTOR_HH__ */
Event Timeline
Log In to Comment