Page MenuHomec4science

fe_engine.hh
No OneTemporary

File Metadata

Created
Mon, Nov 18, 15:29

fe_engine.hh

/**
* @file fe_engine.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Thu Oct 22 2015
*
* @brief FEM class
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_FE_ENGINE_HH__
#define __AKANTU_FE_ENGINE_HH__
/* -------------------------------------------------------------------------- */
#include "aka_memory.hh"
#include "mesh.hh"
#include "element_class.hh"
#include "integration_point.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
class Integrator;
class ShapeFunctions;
class DOFManager;
}
/* -------------------------------------------------------------------------- */
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
/**
* The generic FEEngine class derived in a FEEngineTemplate class containing the
* shape functions and the integration method
*/
class FEEngine : protected Memory {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
FEEngine(Mesh & mesh, UInt spatial_dimension = _all_dimensions,
ID id = "fem", MemoryID memory_id = 0);
virtual ~FEEngine();
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// pre-compute all the shape functions, their derivatives and the jacobians
virtual void initShapeFunctions(const GhostType & ghost_type = _not_ghost) = 0;
/// extract the nodal values and store them per element
template<typename T>
static void extractNodalToElementField(const Mesh & mesh,
const Array<T> & nodal_f,
Array<T> & elemental_f,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter);
/// filter a field
template<typename T>
static void filterElementalData(const Mesh & mesh,
const Array<T> & quad_f,
Array<T> & filtered_f,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter);
/* ------------------------------------------------------------------------ */
/* Integration method bridges */
/* ------------------------------------------------------------------------ */
/// integrate f for all elements of type "type"
virtual void integrate(const Array<Real> & f,
Array<Real> &intf,
UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
/// integrate a scalar value f on all elements of type "type"
virtual Real integrate(const Array<Real> & f,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
/// integrate f for all integration points of type "type" but don't sum over all integration points
virtual void integrateOnIntegrationPoints(const Array<Real> & f,
Array<Real> &intf,
UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
/// integrate one element scalar value on all elements of type "type"
virtual Real integrate(const Vector<Real> & f,
const ElementType & type,
UInt index, const GhostType & ghost_type = _not_ghost) const = 0;
/* ------------------------------------------------------------------------ */
/* compatibility with old FEEngine fashion */
/* ------------------------------------------------------------------------ */
#ifndef SWIG
/// get the number of integration points
virtual UInt getNbIntegrationPoints(const ElementType & type,
const GhostType & ghost_type = _not_ghost) const = 0;
/// get the precomputed shapes
const virtual Array<Real> & getShapes(const ElementType & type,
const GhostType & ghost_type = _not_ghost,
UInt id = 0) const = 0;
/// get the derivatives of shapes
const virtual Array<Real> & getShapesDerivatives(const ElementType & type,
const GhostType & ghost_type = _not_ghost,
UInt id = 0) const = 0;
/// get integration points
const virtual Matrix<Real> & getIntegrationPoints(const ElementType & type,
const GhostType & ghost_type = _not_ghost) const = 0;
#endif
/* ------------------------------------------------------------------------ */
/* Shape method bridges */
/* ------------------------------------------------------------------------ */
/// Compute the gradient nablauq on the integration points of an element type from nodal values u
virtual
void gradientOnIntegrationPoints(const Array<Real> &u,
Array<Real> &nablauq,
const UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
/// Interpolate a nodal field u at the integration points of an element type -> uq
virtual
void interpolateOnIntegrationPoints(const Array<Real> &u,
Array<Real> &uq,
UInt nb_degree_of_freedom,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
/// Interpolate a nodal field u at the integration points of many element types -> uq
virtual
void interpolateOnIntegrationPoints(const Array<Real> & u,
ElementTypeMapArray<Real> & uq,
const ElementTypeMapArray<UInt> * filter_elements = NULL) const = 0;
/// Compute the interpolation point position in the global coordinates for many element types
virtual
void computeIntegrationPointsCoordinates(ElementTypeMapArray<Real> & integration_points_coordinates,
const ElementTypeMapArray<UInt> * filter_elements = NULL) const = 0;
/// Compute the interpolation point position in the global coordinates for an element type
virtual
void computeIntegrationPointsCoordinates(Array<Real> & integration_points_coordinates,
const ElementType & type,
const GhostType & ghost_type = _not_ghost,
const Array<UInt> & filter_elements = empty_filter) const = 0;
/// Build pre-computed matrices for interpolation of field form integration points at other given positions (interpolation_points)
virtual
void initElementalFieldInterpolationFromIntegrationPoints(const ElementTypeMapArray<Real> & interpolation_points_coordinates,
ElementTypeMapArray<Real> & interpolation_points_coordinates_matrices,
ElementTypeMapArray<Real> & integration_points_coordinates_inv_matrices,
const ElementTypeMapArray<UInt> * element_filter) const = 0;
/// interpolate field at given position (interpolation_points) from given values of this field at integration points (field)
virtual
void interpolateElementalFieldFromIntegrationPoints(const ElementTypeMapArray<Real> & field,
const ElementTypeMapArray<Real> & interpolation_points_coordinates,
ElementTypeMapArray<Real> & result,
const GhostType ghost_type,
const ElementTypeMapArray<UInt> * element_filter) const = 0;
/// Interpolate field at given position from given values of this field at integration points (field)
/// using matrices precomputed with initElementalFieldInterplationFromIntegrationPoints
virtual
void interpolateElementalFieldFromIntegrationPoints(const ElementTypeMapArray<Real> & field,
const ElementTypeMapArray<Real> & interpolation_points_coordinates_matrices,
const ElementTypeMapArray<Real> & integration_points_coordinates_inv_matrices,
ElementTypeMapArray<Real> & result,
const GhostType ghost_type,
const ElementTypeMapArray<UInt> * element_filter) const = 0;
/// interpolate on a phyiscal point inside an element
virtual
void interpolate(const Vector<Real> & real_coords,
const Matrix<Real> & nodal_values,
Vector<Real> & interpolated,
const Element & element) const = 0;
/// compute the shape on a provided point
virtual
void computeShapes(const Vector<Real> & real_coords,
UInt elem,
const ElementType & type,
Vector<Real> & shapes,
const GhostType & ghost_type = _not_ghost) const = 0;
/// compute the shape derivatives on a provided point
virtual
void computeShapeDerivatives(const Vector<Real> & real__coords,
UInt element,
const ElementType & type,
Matrix<Real> & shape_derivatives,
const GhostType & ghost_type = _not_ghost) const = 0;
/* ------------------------------------------------------------------------ */
/* Other methods */
/* ------------------------------------------------------------------------ */
/// pre-compute normals on integration points
virtual void computeNormalsOnIntegrationPoints(const GhostType & ghost_type = _not_ghost) = 0;
/// pre-compute normals on integration points
virtual void computeNormalsOnIntegrationPoints(__attribute__((unused)) const Array<Real> & field,
__attribute__((unused)) const GhostType & ghost_type = _not_ghost) {
AKANTU_DEBUG_TO_IMPLEMENT();
}
/// pre-compute normals on integration points
virtual void computeNormalsOnIntegrationPoints(__attribute__((unused)) const Array<Real> & field,
__attribute__((unused)) Array<Real> & normal,
__attribute__((unused)) const ElementType & type,
__attribute__((unused)) const GhostType & ghost_type = _not_ghost) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
// /// assemble vectors
// void assembleArray(const Array<Real> & elementary_vect,
// Array<Real> & nodal_values,
// const Array<Int> & equation_number,
// UInt nb_degree_of_freedom,
// const ElementType & type,
// const GhostType & ghost_type = _not_ghost,
// const Array<UInt> & filter_elements = empty_filter,
// Real scale_factor = 1) const;
// /// assemble matrix in the complete sparse matrix
// void assembleMatrix(const Array<Real> & elementary_mat,
// SparseMatrix & matrix,
// UInt nb_degree_of_freedom,
// const ElementType & type,
// const GhostType & ghost_type = _not_ghost,
// const Array<UInt> & filter_elements = empty_filter) const;
/// assemble a field as a lumped matrix (ex. rho in lumped mass)
virtual void assembleFieldLumped(__attribute__ ((unused)) const Array<Real> & field,
__attribute__ ((unused)) const ID & lumped,
__attribute__ ((unused)) const ID & dof_id,
__attribute__ ((unused)) DOFManager & dof_manager,
__attribute__ ((unused)) ElementType type,
__attribute__ ((unused)) const GhostType & ghost_type) const {
AKANTU_DEBUG_TO_IMPLEMENT();
};
/// assemble a field as a matrix (ex. rho to mass matrix)
virtual void assembleFieldMatrix(__attribute__ ((unused)) const Array<Real> & field_1,
__attribute__ ((unused)) UInt nb_degree_of_freedom,
__attribute__ ((unused)) SparseMatrix & matrix,
__attribute__ ((unused)) ElementType type,
__attribute__ ((unused)) const GhostType & ghost_type) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
#ifdef AKANTU_STRUCTURAL_MECHANICS
/// assemble a field as a matrix for structural elements (ex. rho to mass matrix)
virtual void assembleFieldMatrix(__attribute__ ((unused)) const Array<Real> & field_1,
__attribute__ ((unused)) UInt nb_degree_of_freedom,
__attribute__ ((unused)) SparseMatrix & M,
__attribute__ ((unused)) Array<Real> * n,
__attribute__ ((unused)) ElementTypeMapArray<Real> & rotation_mat,
__attribute__ ((unused)) ElementType type,
__attribute__ ((unused)) const GhostType & ghost_type) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
/// compute shapes function in a matrix for structural elements
virtual void computeShapesMatrix(__attribute__ ((unused))const ElementType & type,
__attribute__ ((unused))UInt nb_degree_of_freedom,
__attribute__ ((unused))UInt nb_nodes_per_element,
__attribute__ ((unused))Array<Real> * n,
__attribute__ ((unused))UInt id,
__attribute__ ((unused))UInt degree_to_interpolate,
__attribute__ ((unused))UInt degree_interpolated,
__attribute__ ((unused))const bool sign,
__attribute__ ((unused))const GhostType & ghost_type) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
#endif
/// function to print the containt of the class
virtual void printself(std::ostream & stream, int indent = 0) const;
private:
/// initialise the class
void init();
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// get the dimension of the element handeled by this fe_engine object
AKANTU_GET_MACRO(ElementDimension, element_dimension, UInt);
/// get the mesh contained in the fem object
AKANTU_GET_MACRO(Mesh, mesh, const Mesh &);
/// get the mesh contained in the fem object
AKANTU_GET_MACRO_NOT_CONST(Mesh, mesh, Mesh &);
/// get the in-radius of an element
static inline Real getElementInradius(const Matrix<Real> & coord, const ElementType & type);
/// get the normals on integration points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(NormalsOnIntegrationPoints, normals_on_integration_points, Real);
/// get cohesive element type for a given facet type
static inline ElementType getCohesiveElementType(const ElementType & type_facet);
/// get igfem element type for a given regular type
static inline Vector<ElementType> getIGFEMElementTypes(const ElementType & type);
/// get the interpolation element associated to an element type
static inline InterpolationType getInterpolationType(const ElementType & el_type);
/// get the shape function class (probably useless: see getShapeFunction in fe_engine_template.hh)
virtual const ShapeFunctions & getShapeFunctionsInterface() const = 0;
/// get the integrator class (probably useless: see getIntegrator in fe_engine_template.hh)
virtual const Integrator & getIntegratorInterface() const = 0;
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// spatial dimension of the problem
UInt element_dimension;
/// the mesh on which all computation are made
Mesh & mesh;
/// normals at integration points
ElementTypeMapArray<Real> normals_on_integration_points;
};
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
/// standard output stream operator
inline std::ostream & operator <<(std::ostream & stream, const FEEngine & _this)
{
_this.printself(stream);
return stream;
}
/// standard output stream operator
inline std::ostream & operator <<(std::ostream & stream, const IntegrationPoint & _this)
{
_this.printself(stream);
return stream;
}
__END_AKANTU__
#include "fe_engine_inline_impl.cc"
#include "fe_engine_template.hh"
#endif /* __AKANTU_FE_ENGINE_HH__ */

Event Timeline