Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91956226
test_petsc_matrix_diagonal.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 16, 02:51
Size
5 KB
Mime Type
text/x-c
Expires
Mon, Nov 18, 02:51 (2 d)
Engine
blob
Format
Raw Data
Handle
22353692
Attached To
rAKA akantu
test_petsc_matrix_diagonal.cc
View Options
/**
* @file test_petsc_matrix_diagonal.cc
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @date Wed Apr 22 09:41:14 2015
*
* @brief test the connectivity is correctly represented in the PETScMatrix
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include <iostream>
/* -------------------------------------------------------------------------- */
#include "static_communicator.hh"
#include "aka_common.hh"
#include "aka_csr.hh"
#include "mesh.hh"
#include "mesh_io.hh"
#include "mesh_utils.hh"
#include "distributed_synchronizer.hh"
#include "petsc_matrix.hh"
#include "fe_engine.hh"
#include "dof_synchronizer.hh"
#include "dumper_paraview.hh"
#include "mesh_partition_scotch.hh"
using
namespace
akantu
;
int
main
(
int
argc
,
char
*
argv
[])
{
initialize
(
argc
,
argv
);
const
ElementType
element_type
=
_triangle_3
;
const
GhostType
ghost_type
=
_not_ghost
;
UInt
spatial_dimension
=
2
;
StaticCommunicator
&
comm
=
akantu
::
StaticCommunicator
::
getStaticCommunicator
();
Int
psize
=
comm
.
getNbProc
();
Int
prank
=
comm
.
whoAmI
();
/// read the mesh and partition it
Mesh
mesh
(
spatial_dimension
);
/* ------------------------------------------------------------------------ */
/* Parallel initialization */
/* ------------------------------------------------------------------------ */
DistributedSynchronizer
*
communicator
=
NULL
;
if
(
prank
==
0
)
{
/// creation mesh
mesh
.
read
(
"triangle.msh"
);
MeshPartitionScotch
*
partition
=
new
MeshPartitionScotch
(
mesh
,
spatial_dimension
);
partition
->
partitionate
(
psize
);
communicator
=
DistributedSynchronizer
::
createDistributedSynchronizerMesh
(
mesh
,
partition
);
delete
partition
;
}
else
{
communicator
=
DistributedSynchronizer
::
createDistributedSynchronizerMesh
(
mesh
,
NULL
);
}
// DumperParaview mesh_dumper("mesh_dumper");
// mesh_dumper.registerMesh(mesh, spatial_dimension, _not_ghost);
// mesh_dumper.dump();
/// initialize the FEEngine and the dof_synchronizer
FEEngine
*
fem
=
new
FEEngineTemplate
<
IntegratorGauss
,
ShapeLagrange
,
_ek_regular
>
(
mesh
,
spatial_dimension
,
"my_fem"
);
DOFSynchronizer
dof_synchronizer
(
mesh
,
spatial_dimension
);
UInt
nb_global_nodes
=
mesh
.
getNbGlobalNodes
();
dof_synchronizer
.
initGlobalDOFEquationNumbers
();
// construct an Akantu sparse matrix, build the profile and fill the matrix for the given mesh
UInt
nb_element
=
mesh
.
getNbElement
(
element_type
);
UInt
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
element_type
);
UInt
nb_dofs_per_element
=
spatial_dimension
*
nb_nodes_per_element
;
SparseMatrix
K_akantu
(
nb_global_nodes
*
spatial_dimension
,
_unsymmetric
);
K_akantu
.
buildProfile
(
mesh
,
dof_synchronizer
,
spatial_dimension
);
/// use as elemental matrices a matrix with values equal to 1 every where
Matrix
<
Real
>
element_input
(
nb_dofs_per_element
,
nb_dofs_per_element
,
1.
);
Array
<
Real
>
K_e
=
Array
<
Real
>
(
nb_element
,
nb_dofs_per_element
*
nb_dofs_per_element
,
"K_e"
);
Array
<
Real
>::
matrix_iterator
K_e_it
=
K_e
.
begin
(
nb_dofs_per_element
,
nb_dofs_per_element
);
Array
<
Real
>::
matrix_iterator
K_e_end
=
K_e
.
end
(
nb_dofs_per_element
,
nb_dofs_per_element
);
for
(;
K_e_it
!=
K_e_end
;
++
K_e_it
)
*
K_e_it
=
element_input
;
// assemble the test matrix
fem
->
assembleMatrix
(
K_e
,
K_akantu
,
spatial_dimension
,
element_type
,
ghost_type
);
/// construct a PETSc matrix
PETScMatrix
K_petsc
(
nb_global_nodes
*
spatial_dimension
,
_unsymmetric
);
/// build the profile of the PETSc matrix for the mesh of this example
K_petsc
.
buildProfile
(
mesh
,
dof_synchronizer
,
spatial_dimension
);
/// add an Akantu sparse matrix to a PETSc sparse matrix
K_petsc
.
add
(
K_akantu
,
1
);
/// check to how many elements each node is connected
CSR
<
Element
>
node_to_elem
;
MeshUtils
::
buildNode2Elements
(
mesh
,
node_to_elem
,
spatial_dimension
);
/// test the diagonal of the PETSc matrix: the diagonal entries
/// of the PETSc matrix correspond to the number of elements
/// connected to the node of the dof. Note: for an Akantu matrix this is only true for the serial case
Real
error
=
0.
;
/// loop over all diagonal values of the matrix
for
(
UInt
i
=
0
;
i
<
mesh
.
getNbNodes
();
++
i
)
{
for
(
UInt
j
=
0
;
j
<
spatial_dimension
;
++
j
)
{
UInt
dof
=
i
*
spatial_dimension
+
j
;
/// for PETSc matrix only DOFs on the processor and be accessed
if
(
dof_synchronizer
.
isLocalOrMasterDOF
(
dof
))
{
UInt
global_dof
=
dof_synchronizer
.
getDOFGlobalID
(
dof
);
std
::
cout
<<
"Number of elements connected: "
<<
node_to_elem
.
getNbCols
(
i
)
<<
std
::
endl
;
std
::
cout
<<
"K_petsc("
<<
global_dof
<<
","
<<
global_dof
<<
")="
<<
K_petsc
(
dof
,
dof
)
<<
std
::
endl
;
error
+=
std
::
abs
(
K_petsc
(
dof
,
dof
)
-
node_to_elem
.
getNbCols
(
i
));
}
}
}
if
(
error
>
Math
::
getTolerance
()
)
{
std
::
cout
<<
"error in the stiffness matrix!!!"
<<
std
::
endl
;
finalize
();
return
EXIT_FAILURE
;
}
delete
communicator
;
finalize
();
return
EXIT_SUCCESS
;
}
Event Timeline
Log In to Comment