Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92429212
phase_field_notch.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 20, 05:40
Size
4 KB
Mime Type
text/x-c
Expires
Fri, Nov 22, 05:40 (2 d)
Engine
blob
Format
Raw Data
Handle
22434848
Attached To
rAKA akantu
phase_field_notch.cc
View Options
/**
* Copyright (©) 2018-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "coupler_solid_phasefield.hh"
#include "phase_field_element_filter.hh"
/* -------------------------------------------------------------------------- */
#include <chrono>
#include <iostream>
/* -------------------------------------------------------------------------- */
using namespace akantu;
/* -------------------------------------------------------------------------- */
using clk = std::chrono::high_resolution_clock;
using second = std::chrono::duration<double>;
using millisecond = std::chrono::duration<double, std::milli>;
const Int spatial_dimension = 2;
/* -------------------------------------------------------------------------- */
int main(int argc, char * argv[]) {
initialize("material_notch.dat", argc, argv);
// create mesh
Mesh mesh(spatial_dimension);
mesh.read("square_notch.msh");
// The model coupler contains the solid mechanics and the phase-field models
CouplerSolidPhaseField coupler(mesh);
auto & model = coupler.getSolidMechanicsModel();
auto & phase = coupler.getPhaseFieldModel();
// Each model can bet set separately
model.initFull(_analysis_method = _static);
phase.initFull(_analysis_method = _static);
// Dirichlet BC
model.applyBC(BC::Dirichlet::FixedValue(0., _y), "bottom");
model.applyBC(BC::Dirichlet::FixedValue(0., _x), "left");
// Dumper settings
model.setBaseName("phase_notch");
model.addDumpField("stress");
model.addDumpField("grad_u");
model.addDumpFieldVector("displacement");
model.addDumpField("damage");
model.dump();
const Int nb_steps = 1000;
Real increment = 6e-6;
Int nb_staggered_steps = 5;
auto start_time = clk::now();
// Main loop over the loading steps
for (Int s = 1; s < nb_steps; ++s) {
if (s >= 500) {
increment = 2e-6;
nb_staggered_steps = 10;
}
if (s % 200 == 0) {
constexpr std::array<char, 5> wheel{"/-\\|"};
auto elapsed = clk::now() - start_time;
auto time_per_step = elapsed / s;
int idx = (s / 10) % 4;
std::cout << "\r[" << wheel.at(idx) << "] " << std::setw(5) << s << "/"
<< nb_steps << " (" << std::setprecision(2) << std::fixed
<< std::setw(8) << millisecond(time_per_step).count()
<< "ms/step - elapsed: " << std::setw(8)
<< second(elapsed).count() << "s - ETA: " << std::setw(8)
<< second((nb_steps - s) * time_per_step).count() << "s)"
<< std::string(' ', 20) << std::flush;
}
model.applyBC(BC::Dirichlet::IncrementValue(increment, _y), "top");
/* At each step, the two solvers are called alternately. Here a fixed number
* of staggered iterations is set for simplicity but a convergence based on
* the displacements, damage and/or energy can also be used to exit the
* internal loop.*/
for (Idx i = 0; i < nb_staggered_steps; ++i) {
coupler.solve();
}
if (s % 100 == 0) {
model.dump();
}
}
/* Here a damage threshold is set and a mesh clustering function is called
* using the phase-field element filter. This allows to cluster the mesh into
* groups of elements separated by the mesh boundaries and "broken" elements
* with damage above the threshold. */
Real damage_limit = 0.15;
auto global_nb_clusters = mesh.createClusters(
spatial_dimension, "crack", PhaseFieldElementFilter(phase, damage_limit));
model.dumpGroup("crack_0");
model.dumpGroup("crack_1");
std::cout << std::endl;
std::cout << "Nb clusters: " << global_nb_clusters << std::endl;
finalize();
return EXIT_SUCCESS;
}
Event Timeline
Log In to Comment