Page MenuHomec4science

phase_field_1d.cc
No OneTemporary

File Metadata

Created
Fri, Jun 28, 22:26

phase_field_1d.cc

/**
* @file phase_field_static_2d.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Oct 1 2018
*
* @brief test of the class PhaseFieldModel on the 2d square
*
* @section LICENSE
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "non_linear_solver.hh"
#include "phase_field_model.hh"
#include "solid_mechanics_model.hh"
#include "solid_phase_coupler.hh"
#include "sparse_matrix.hh"
/* -------------------------------------------------------------------------- */
#include <iostream>
/* -------------------------------------------------------------------------- */
using namespace akantu;
const UInt spatial_dimension = 1;
/* -------------------------------------------------------------------------- */
int main(int argc, char *argv[])
{
initialize("material_1d.dat", argc, argv);
const Real max_displacement = 0.05;
const UInt nbSteps = 50 ;
const UInt unload_start = 200; // add to be evenmultiple of 10
Real time_step = max_displacement/nbSteps;
Mesh mesh(spatial_dimension);
mesh.read("1d_1elem_bar.msh");
PhaseFieldModel pfm(mesh);
pfm.initFull(_analysis_method = _static);
// solid mechanics model initialization
SolidMechanicsModel smm(mesh);
smm.initFull(_analysis_method = _static);
smm.applyBC(BC::Dirichlet::FixedValue(0., _x), "Left");
smm.applyBC(BC::Dirichlet::FixedValue(0., _x), "Right");
smm.setBaseName( "square");
smm.addDumpFieldVector( "displacement");
smm.addDumpFieldVector( "internal_force");
smm.addDumpField( "stress");
smm.addDumpField( "grad_u");
smm.addDumpField( "damage");
smm.addDumpField( "blocked_dofs");
smm.dump();
auto & smm_solver = smm.getNonLinearSolver();
smm_solver.set("max_iterations", 1000);
smm_solver.set("threshold", 1e-8);
smm_solver.set("convergence_type", _scc_residual);
// coupling of models
SolidPhaseCoupler<SolidMechanicsModel, PhaseFieldModel> coupler(smm, pfm);
Real stress_homogeneous;
Real young_unload;
Real gc = 0.00014e-2;
Real l0 = 1./8;
Real Young = 1.0;
for (UInt s = 1; s < nbSteps; ++s) {
//Increasing loading
if( s<unload_start || s>(2.1*unload_start)){
smm.applyBC(BC::Dirichlet::IncrementValue(-time_step,_x),"Left");
smm.applyBC(BC::Dirichlet::IncrementValue(time_step,_x),"Right");
}
else{
smm.applyBC(BC::Dirichlet::IncrementValue(time_step,_x),"Left");
smm.applyBC(BC::Dirichlet::IncrementValue(-time_step,_x),"Right");
}
coupler.solve();
auto & K = pfm.getDOFManager().getMatrix("K");
K.saveMatrix("matrix.mtx");
Array<Real> & stress = smm.getMaterial("solid").getArray<Real>("stress", _segment_2);
Array<Real> & damage = smm.getMaterial("solid").getArray<Real>("damage", _segment_2);
Array<Real> & grad_u = smm.getMaterial("solid").getArray<Real>("grad_u", _segment_2);
smm.dump();
if(s==(unload_start-1))
young_unload = stress(0,0)/grad_u(0,0);
if( s<unload_start || s>(3.2*unload_start)) {
// verification that the stress match the 1D analytical homogeneous stress
// from Borden et al. CMAME vol. 217-220, page 77-95 (2012)
stress_homogeneous = pow(l0/gc*Young*pow(grad_u(0,0),2)+1,-2)*Young*grad_u(0,0);
std::cout << stress_homogeneous << std::endl;
std::cout << stress(0,0) << " ---- " << damage(0,0) << std::endl;
//if( (std::abs(stress_homogeneous-stress(0,0))/stress_homogeneous) > 1e-9)
// return EXIT_FAILURE;
}
else {
Real sig_outof_eps = std::abs(stress(0,0)/grad_u(0,0));
if( (std::abs(grad_u(0,0)) > 1e-9)
&& ( (grad_u(0,0)>0 && (std::abs(sig_outof_eps-young_unload)/young_unload) > 1e-9)
|| ( grad_u(0,0)<0 && std::abs(sig_outof_eps-Young)/Young > 1e-9 ) ) ){
std::cout << s << "," <<grad_u(0,0) << "," << stress(0,0) / grad_u(0,0) << "," << Young << "," << std::abs(sig_outof_eps-young_unload)/young_unload << "," << std::abs(sig_outof_eps-Young)/Young << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Step " << s << "/" << nbSteps << std::endl;
}
finalize();
return EXIT_SUCCESS;
}

Event Timeline