Page MenuHomec4science

aka_voigthelper_tmpl.hh
No OneTemporary

File Metadata

Created
Sun, Nov 3, 11:55

aka_voigthelper_tmpl.hh

/**
* @file aka_voigthelper_tmpl.hh
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @date Wed Nov 16 12:22:58 2016
*/
/* -------------------------------------------------------------------------- */
#include "aka_voigthelper.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_AKA_VOIGTHELPER_TMPL_HH__
#define __AKANTU_AKA_VOIGTHELPER_TMPL_HH__
namespace akantu {
template <UInt dim>
const UInt VoigtHelper<dim>::size = dim *(dim - (dim - 1) / 2.);
/* -------------------------------------------------------------------------- */
template <UInt dim>
inline void VoigtHelper<dim>::transferBMatrixToSymVoigtBMatrix(
const Matrix<Real> & B, Matrix<Real> & Bvoigt, UInt nb_nodes_per_element) {
Bvoigt.clear();
for (UInt i = 0; i < dim; ++i)
for (UInt n = 0; n < nb_nodes_per_element; ++n)
Bvoigt(i, i + n * dim) = B(i, n);
if (dim == 2) {
/// in 2D, fill the @f$ [\frac{\partial N_i}{\partial x}, \frac{\partial
/// N_i}{\partial y}]@f$ row
for (UInt n = 0; n < nb_nodes_per_element; ++n) {
Bvoigt(2, 1 + n * 2) = B(0, n);
Bvoigt(2, 0 + n * 2) = B(1, n);
}
}
if (dim == 3) {
for (UInt n = 0; n < nb_nodes_per_element; ++n) {
Real dndx = B(0, n);
Real dndy = B(1, n);
Real dndz = B(2, n);
/// in 3D, fill the @f$ [0, \frac{\partial N_i}{\partial y},
/// \frac{N_i}{\partial z}]@f$ row
Bvoigt(3, 1 + n * 3) = dndz;
Bvoigt(3, 2 + n * 3) = dndy;
/// in 3D, fill the @f$ [\frac{\partial N_i}{\partial x}, 0,
/// \frac{N_i}{\partial z}]@f$ row
Bvoigt(4, 0 + n * 3) = dndz;
Bvoigt(4, 2 + n * 3) = dndx;
/// in 3D, fill the @f$ [\frac{\partial N_i}{\partial x},
/// \frac{N_i}{\partial y}, 0]@f$ row
Bvoigt(5, 0 + n * 3) = dndy;
Bvoigt(5, 1 + n * 3) = dndx;
}
}
}
/* -------------------------------------------------------------------------- */
template <UInt dim>
inline void VoigtHelper<dim>::transferBMatrixToBNL(const Matrix<Real> & B,
Matrix<Real> & Bvoigt,
UInt nb_nodes_per_element) {
Bvoigt.clear();
// see Finite element formulations for large deformation dynamic analysis,
// Bathe et al. IJNME vol 9, 1975, page 364 B_{NL}
for (UInt i = 0; i < dim; ++i) {
for (UInt m = 0; m < nb_nodes_per_element; ++m) {
for (UInt n = 0; n < dim; ++n) {
// std::cout << B(n, m) << std::endl;
Bvoigt(i * dim + n, m * dim + i) = B(n, m);
}
}
}
// TODO: Verify the 2D and 1D case
}
/* -------------------------------------------------------------------------- */
template <>
inline void VoigtHelper<1>::transferBMatrixToBL2(const Matrix<Real> & B,
const Matrix<Real> & grad_u,
Matrix<Real> & Bvoigt,
UInt nb_nodes_per_element) {
Bvoigt.clear();
for (UInt j = 0; j < nb_nodes_per_element; ++j)
for (UInt k = 0; k < 2; ++k)
Bvoigt(0, j * 2 + k) = grad_u(k, 0) * B(0, j);
}
/* -------------------------------------------------------------------------- */
template <>
inline void VoigtHelper<3>::transferBMatrixToBL2(const Matrix<Real> & B,
const Matrix<Real> & grad_u,
Matrix<Real> & Bvoigt,
UInt nb_nodes_per_element) {
Bvoigt.clear();
for (UInt i = 0; i < 3; ++i)
for (UInt j = 0; j < nb_nodes_per_element; ++j)
for (UInt k = 0; k < 3; ++k)
Bvoigt(i, j * 3 + k) = grad_u(k, i) * B(i, j);
for (UInt i = 3; i < 6; ++i) {
for (UInt j = 0; j < nb_nodes_per_element; ++j) {
for (UInt k = 0; k < 3; ++k) {
UInt aux = i - 3;
for (UInt m = 0; m < 3; ++m) {
if (m != aux) {
UInt index1 = m;
UInt index2 = 3 - m - aux;
Bvoigt(i, j * 3 + k) += grad_u(k, index1) * B(index2, j);
}
}
}
}
}
}
/* -------------------------------------------------------------------------- */
template <>
inline void VoigtHelper<2>::transferBMatrixToBL2(const Matrix<Real> & B,
const Matrix<Real> & grad_u,
Matrix<Real> & Bvoigt,
UInt nb_nodes_per_element) {
Bvoigt.clear();
for (UInt i = 0; i < 2; ++i)
for (UInt j = 0; j < nb_nodes_per_element; ++j)
for (UInt k = 0; k < 2; ++k)
Bvoigt(i, j * 2 + k) = grad_u(k, i) * B(i, j);
for (UInt j = 0; j < nb_nodes_per_element; ++j) {
for (UInt k = 0; k < 2; ++k) {
for (UInt m = 0; m < 2; ++m) {
UInt index1 = m;
UInt index2 = (2 - 1) - m;
Bvoigt(2, j * 2 + k) += grad_u(k, index1) * B(index2, j);
}
}
}
}
} // akantu
#endif /* __AKANTU_AKA_VOIGTHELPER_TMPL_HH__ */

Event Timeline