Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90732943
material.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 06:37
Size
29 KB
Mime Type
text/x-c++
Expires
Wed, Nov 6, 06:37 (2 d)
Engine
blob
Format
Raw Data
Handle
22100211
Attached To
rAKA akantu
material.hh
View Options
/**
* @file material.hh
*
* @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Wed Nov 25 2015
*
* @brief Mother class for all materials
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_factory.hh"
#include "aka_voigthelper.hh"
#include "data_accessor.hh"
#include "integration_point.hh"
#include "parsable.hh"
#include "parser.hh"
/* -------------------------------------------------------------------------- */
#include "internal_field.hh"
#include "random_internal_field.hh"
/* -------------------------------------------------------------------------- */
#include "mesh_events.hh"
#include "solid_mechanics_model_event_handler.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_MATERIAL_HH__
#define __AKANTU_MATERIAL_HH__
/* -------------------------------------------------------------------------- */
namespace akantu {
class Model;
class SolidMechanicsModel;
} // namespace akantu
namespace akantu {
/**
* Interface of all materials
* Prerequisites for a new material
* - inherit from this class
* - implement the following methods:
* \code
* virtual Real getStableTimeStep(Real h, const Element & element =
* ElementNull);
*
* virtual void computeStress(ElementType el_type,
* GhostType ghost_type = _not_ghost);
*
* virtual void computeTangentStiffness(const ElementType & el_type,
* Array<Real> & tangent_matrix,
* GhostType ghost_type = _not_ghost);
* \endcode
*
*/
class Material : public Memory,
public DataAccessor<Element>,
public Parsable,
public MeshEventHandler,
protected SolidMechanicsModelEventHandler {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
#if __cplusplus > 199711L
Material(const Material & mat) = delete;
Material & operator=(const Material & mat) = delete;
#endif
/// Initialize material with defaults
Material(SolidMechanicsModel & model, const ID & id = "");
/// Initialize material with custom mesh & fe_engine
Material(SolidMechanicsModel & model, UInt dim, const Mesh & mesh,
FEEngine & fe_engine, const ID & id = "");
/// Destructor
~Material() override;
protected:
void initialize();
/* ------------------------------------------------------------------------ */
/* Function that materials can/should reimplement */
/* ------------------------------------------------------------------------ */
protected:
/// constitutive law
virtual void computeStress(__attribute__((unused)) ElementType el_type,
__attribute__((unused))
GhostType ghost_type = _not_ghost) {
AKANTU_DEBUG_TO_IMPLEMENT();
}
/// compute the tangent stiffness matrix
virtual void computeTangentModuli(__attribute__((unused))
const ElementType & el_type,
__attribute__((unused))
Array<Real> & tangent_matrix,
__attribute__((unused))
GhostType ghost_type = _not_ghost) {
AKANTU_DEBUG_TO_IMPLEMENT();
}
/// compute the potential energy
virtual void computePotentialEnergy(ElementType el_type,
GhostType ghost_type = _not_ghost);
/// compute the potential energy for an element
virtual void
computePotentialEnergyByElement(__attribute__((unused)) ElementType type,
__attribute__((unused)) UInt index,
__attribute__((unused))
Vector<Real> & epot_on_quad_points) {
AKANTU_DEBUG_TO_IMPLEMENT();
}
virtual void updateEnergies(__attribute__((unused)) ElementType el_type,
__attribute__((unused))
GhostType ghost_type = _not_ghost) {}
virtual void updateEnergiesAfterDamage(__attribute__((unused))
ElementType el_type,
__attribute__((unused))
GhostType ghost_type = _not_ghost) {}
/// set the material to steady state (to be implemented for materials that
/// need it)
virtual void setToSteadyState(__attribute__((unused)) ElementType el_type,
__attribute__((unused))
GhostType ghost_type = _not_ghost) {}
/// function called to update the internal parameters when the modifiable
/// parameters are modified
virtual void updateInternalParameters() {}
public:
/// extrapolate internal values
virtual void extrapolateInternal(const ID & id, const Element & element,
const Matrix<Real> & points,
Matrix<Real> & extrapolated);
/// compute the p-wave speed in the material
virtual Real getPushWaveSpeed(__attribute__((unused))
const Element & element) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
/// compute the s-wave speed in the material
virtual Real getShearWaveSpeed(__attribute__((unused))
const Element & element) const {
AKANTU_DEBUG_TO_IMPLEMENT();
}
/// get a material celerity to compute the stable time step (default: is the
/// push wave speed)
virtual Real getCelerity(const Element & element) const {
return getPushWaveSpeed(element);
}
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
template <typename T>
void registerInternal(__attribute__((unused)) InternalField<T> & vect) {
AKANTU_DEBUG_TO_IMPLEMENT();
}
template <typename T>
void unregisterInternal(__attribute__((unused)) InternalField<T> & vect) {
AKANTU_DEBUG_TO_IMPLEMENT();
}
/// initialize the material computed parameter
virtual void initMaterial();
/// compute the residual for this material
// virtual void updateResidual(GhostType ghost_type = _not_ghost);
/// assemble the residual for this material
virtual void assembleInternalForces(GhostType ghost_type);
/// save the stress in the previous_stress if needed
virtual void savePreviousState();
/// compute the stresses for this material
virtual void computeAllStresses(GhostType ghost_type = _not_ghost);
virtual void
computeAllStressesFromTangentModuli(GhostType ghost_type = _not_ghost);
virtual void computeAllCauchyStresses(GhostType ghost_type = _not_ghost);
/// set material to steady state
void setToSteadyState(GhostType ghost_type = _not_ghost);
/// compute the stiffness matrix
virtual void assembleStiffnessMatrix(GhostType ghost_type);
/// add an element to the local mesh filter
inline UInt addElement(const ElementType & type, UInt element,
const GhostType & ghost_type);
inline UInt addElement(const Element & element);
/// add many elements at once
void addElements(const Array<Element> & elements_to_add);
/// remove many element at once
void removeElements(const Array<Element> & elements_to_remove);
/// function to print the contain of the class
void printself(std::ostream & stream, int indent = 0) const override;
/**
* interpolate stress on given positions for each element by means
* of a geometrical interpolation on quadrature points
*/
void interpolateStress(ElementTypeMapArray<Real> & result,
const GhostType ghost_type = _not_ghost);
/**
* interpolate stress on given positions for each element by means
* of a geometrical interpolation on quadrature points and store the
* results per facet
*/
void interpolateStressOnFacets(ElementTypeMapArray<Real> & result,
ElementTypeMapArray<Real> & by_elem_result,
const GhostType ghost_type = _not_ghost);
/**
* function to initialize the elemental field interpolation
* function by inverting the quadrature points' coordinates
*/
void initElementalFieldInterpolation(
const ElementTypeMapArray<Real> & interpolation_points_coordinates);
/* ------------------------------------------------------------------------ */
/* Common part */
/* ------------------------------------------------------------------------ */
protected:
/* ------------------------------------------------------------------------ */
inline UInt getTangentStiffnessVoigtSize(UInt spatial_dimension) const;
/// compute the potential energy by element
void computePotentialEnergyByElements();
/// resize the intenals arrays
virtual void resizeInternals();
/* ------------------------------------------------------------------------ */
/* Finite deformation functions */
/* This functions area implementing what is described in the paper of Bathe */
/* et al, in IJNME, Finite Element Formulations For Large Deformation */
/* Dynamic Analysis, Vol 9, 353-386, 1975 */
/* ------------------------------------------------------------------------ */
protected:
/// assemble the residual
template <UInt dim> void assembleInternalForces(GhostType ghost_type);
/// Computation of Cauchy stress tensor in the case of finite deformation from
/// the 2nd Piola-Kirchhoff for a given element type
template <UInt dim>
void computeCauchyStress(ElementType el_type,
GhostType ghost_type = _not_ghost);
/// Computation the Cauchy stress the 2nd Piola-Kirchhoff and the deformation
/// gradient
template <UInt dim>
inline void computeCauchyStressOnQuad(const Matrix<Real> & F,
const Matrix<Real> & S,
Matrix<Real> & cauchy,
const Real & C33 = 1.0) const;
template <UInt dim>
void computeAllStressesFromTangentModuli(const ElementType & type,
GhostType ghost_type);
template <UInt dim>
void assembleStiffnessMatrix(const ElementType & type, GhostType ghost_type);
/// assembling in finite deformation
template <UInt dim>
void assembleStiffnessMatrixNL(const ElementType & type,
GhostType ghost_type);
template <UInt dim>
void assembleStiffnessMatrixL2(const ElementType & type,
GhostType ghost_type);
/// Size of the Stress matrix for the case of finite deformation see: Bathe et
/// al, IJNME, Vol 9, 353-386, 1975
inline UInt getCauchyStressMatrixSize(UInt spatial_dimension) const;
/// Sets the stress matrix according to Bathe et al, IJNME, Vol 9, 353-386,
/// 1975
template <UInt dim>
inline void setCauchyStressMatrix(const Matrix<Real> & S_t,
Matrix<Real> & sigma);
/// write the stress tensor in the Voigt notation.
template <UInt dim>
inline void setCauchyStressArray(const Matrix<Real> & S_t,
Matrix<Real> & sigma_voight);
/* ------------------------------------------------------------------------ */
/* Conversion functions */
/* ------------------------------------------------------------------------ */
public:
template <UInt dim>
static inline void gradUToF(const Matrix<Real> & grad_u, Matrix<Real> & F);
static inline void rightCauchy(const Matrix<Real> & F, Matrix<Real> & C);
static inline void leftCauchy(const Matrix<Real> & F, Matrix<Real> & B);
template <UInt dim>
static inline void gradUToEpsilon(const Matrix<Real> & grad_u,
Matrix<Real> & epsilon);
template <UInt dim>
static inline void gradUToGreenStrain(const Matrix<Real> & grad_u,
Matrix<Real> & epsilon);
static inline Real stressToVonMises(const Matrix<Real> & stress);
protected:
/// converts global element to local element
inline Element convertToLocalElement(const Element & global_element) const;
/// converts local element to global element
inline Element convertToGlobalElement(const Element & local_element) const;
/// converts global quadrature point to local quadrature point
inline IntegrationPoint
convertToLocalPoint(const IntegrationPoint & global_point) const;
/// converts local quadrature point to global quadrature point
inline IntegrationPoint
convertToGlobalPoint(const IntegrationPoint & local_point) const;
/* ------------------------------------------------------------------------ */
/* DataAccessor inherited members */
/* ------------------------------------------------------------------------ */
public:
inline UInt getNbData(const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void packData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void unpackData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) override;
template <typename T>
inline void packElementDataHelper(const ElementTypeMapArray<T> & data_to_pack,
CommunicationBuffer & buffer,
const Array<Element> & elements,
const ID & fem_id = ID()) const;
template <typename T>
inline void unpackElementDataHelper(ElementTypeMapArray<T> & data_to_unpack,
CommunicationBuffer & buffer,
const Array<Element> & elements,
const ID & fem_id = ID());
/* ------------------------------------------------------------------------ */
/* MeshEventHandler inherited members */
/* ------------------------------------------------------------------------ */
public:
/* ------------------------------------------------------------------------ */
void onNodesAdded(const Array<UInt> &, const NewNodesEvent &) override{};
void onNodesRemoved(const Array<UInt> &, const Array<UInt> &,
const RemovedNodesEvent &) override{};
void onElementsAdded(const Array<Element> & element_list,
const NewElementsEvent & event) override;
void onElementsRemoved(const Array<Element> & element_list,
const ElementTypeMapArray<UInt> & new_numbering,
const RemovedElementsEvent & event) override;
void onElementsChanged(const Array<Element> &, const Array<Element> &,
const ElementTypeMapArray<UInt> &,
const ChangedElementsEvent &) override{};
/* ------------------------------------------------------------------------ */
/* SolidMechanicsModelEventHandler inherited members */
/* ------------------------------------------------------------------------ */
public:
virtual void beforeSolveStep();
virtual void afterSolveStep();
void onDamageIteration() override;
void onDamageUpdate() override;
void onDump() override;
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
AKANTU_GET_MACRO(Name, name, const std::string &);
AKANTU_GET_MACRO(Model, model, const SolidMechanicsModel &)
AKANTU_GET_MACRO(ID, Memory::getID(), const ID &);
AKANTU_GET_MACRO(Rho, rho, Real);
AKANTU_SET_MACRO(Rho, rho, Real);
AKANTU_GET_MACRO(SpatialDimension, spatial_dimension, UInt);
/// return the potential energy for the subset of elements contained by the
/// material
Real getPotentialEnergy();
/// return the potential energy for the provided element
Real getPotentialEnergy(ElementType & type, UInt index);
/// return the energy (identified by id) for the subset of elements contained
/// by the material
virtual Real getEnergy(const std::string & energy_id);
/// return the energy (identified by id) for the provided element
virtual Real getEnergy(const std::string & energy_id, ElementType type, UInt index);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(ElementFilter, element_filter, UInt);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(GradU, gradu, Real);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(Stress, stress, Real);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(PotentialEnergy, potential_energy,
Real);
AKANTU_GET_MACRO(GradU, gradu, const ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO(Stress, stress, const ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO(ElementFilter, element_filter,
const ElementTypeMapArray<UInt> &);
AKANTU_GET_MACRO(FEEngine, fem, FEEngine &);
bool isNonLocal() const { return is_non_local; }
template <typename T>
const Array<T> & getArray(const ID & id, const ElementType & type,
const GhostType & ghost_type = _not_ghost) const;
template <typename T>
Array<T> & getArray(const ID & id, const ElementType & type,
const GhostType & ghost_type = _not_ghost);
template <typename T>
const InternalField<T> & getInternal(const ID & id) const;
template <typename T> InternalField<T> & getInternal(const ID & id);
template <typename T>
inline bool isInternal(const ID & id, const ElementKind & element_kind) const;
template <typename T>
ElementTypeMap<UInt>
getInternalDataPerElem(const ID & id, const ElementKind & element_kind) const;
bool isFiniteDeformation() const { return finite_deformation; }
bool isInelasticDeformation() const { return inelastic_deformation; }
template <typename T> inline void setParam(const ID & param, T value);
inline const Parameter & getParam(const ID & param) const;
template <typename T>
void flattenInternal(const std::string & field_id,
ElementTypeMapArray<T> & internal_flat,
const GhostType ghost_type = _not_ghost,
ElementKind element_kind = _ek_not_defined) const;
/// apply a constant eigengrad_u everywhere in the material
virtual void applyEigenGradU(const Matrix<Real> & prescribed_eigen_grad_u,
const GhostType = _not_ghost);
/// specify if the matrix need to be recomputed for this material
virtual bool hasStiffnessMatrixChanged() { return true; }
protected:
bool isInit() const { return is_init; }
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// boolean to know if the material has been initialized
bool is_init;
std::map<ID, InternalField<Real> *> internal_vectors_real;
std::map<ID, InternalField<UInt> *> internal_vectors_uint;
std::map<ID, InternalField<bool> *> internal_vectors_bool;
protected:
/// Link to the fem object in the model
FEEngine & fem;
/// Finite deformation
bool finite_deformation;
/// Finite deformation
bool inelastic_deformation;
/// material name
std::string name;
/// The model to witch the material belong
SolidMechanicsModel & model;
/// density : rho
Real rho;
/// spatial dimension
UInt spatial_dimension;
/// list of element handled by the material
ElementTypeMapArray<UInt> element_filter;
/// stresses arrays ordered by element types
InternalField<Real> stress;
/// eigengrad_u arrays ordered by element types
InternalField<Real> eigengradu;
/// grad_u arrays ordered by element types
InternalField<Real> gradu;
/// Green Lagrange strain (Finite deformation)
InternalField<Real> green_strain;
/// Second Piola-Kirchhoff stress tensor arrays ordered by element types
/// (Finite deformation)
InternalField<Real> piola_kirchhoff_2;
/// potential energy by element
InternalField<Real> potential_energy;
/// tell if using in non local mode or not
bool is_non_local;
/// tell if the material need the previous stress state
bool use_previous_stress;
/// tell if the material need the previous strain state
bool use_previous_gradu;
/// elemental field interpolation coordinates
InternalField<Real> interpolation_inverse_coordinates;
/// elemental field interpolation points
InternalField<Real> interpolation_points_matrices;
/// vector that contains the names of all the internals that need to
/// be transferred when material interfaces move
std::vector<ID> internals_to_transfer;
};
/// standard output stream operator
inline std::ostream & operator<<(std::ostream & stream,
const Material & _this) {
_this.printself(stream);
return stream;
}
} // namespace akantu
#include "material_inline_impl.cc"
#include "internal_field_tmpl.hh"
#include "random_internal_field_tmpl.hh"
/* -------------------------------------------------------------------------- */
/* Auto loop */
/* -------------------------------------------------------------------------- */
/// This can be used to automatically write the loop on quadrature points in
/// functions such as computeStress. This macro in addition to write the loop
/// provides two tensors (matrices) sigma and grad_u
#define MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type) \
Array<Real>::matrix_iterator gradu_it = \
this->gradu(el_type, ghost_type) \
.begin(this->spatial_dimension, this->spatial_dimension); \
Array<Real>::matrix_iterator gradu_end = \
this->gradu(el_type, ghost_type) \
.end(this->spatial_dimension, this->spatial_dimension); \
\
this->stress(el_type, ghost_type) \
.resize(this->gradu(el_type, ghost_type).size()); \
\
Array<Real>::iterator<Matrix<Real>> stress_it = \
this->stress(el_type, ghost_type) \
.begin(this->spatial_dimension, this->spatial_dimension); \
\
if (this->isFiniteDeformation()) { \
this->piola_kirchhoff_2(el_type, ghost_type) \
.resize(this->gradu(el_type, ghost_type).size()); \
stress_it = this->piola_kirchhoff_2(el_type, ghost_type) \
.begin(this->spatial_dimension, this->spatial_dimension); \
} \
\
for (; gradu_it != gradu_end; ++gradu_it, ++stress_it) { \
Matrix<Real> & __attribute__((unused)) grad_u = *gradu_it; \
Matrix<Real> & __attribute__((unused)) sigma = *stress_it
#define MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END }
/// This can be used to automatically write the loop on quadrature points in
/// functions such as computeTangentModuli. This macro in addition to write the
/// loop provides two tensors (matrices) sigma_tensor, grad_u, and a matrix
/// where the elemental tangent moduli should be stored in Voigt Notation
#define MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_BEGIN(tangent_mat) \
Array<Real>::matrix_iterator gradu_it = \
this->gradu(el_type, ghost_type) \
.begin(this->spatial_dimension, this->spatial_dimension); \
Array<Real>::matrix_iterator gradu_end = \
this->gradu(el_type, ghost_type) \
.end(this->spatial_dimension, this->spatial_dimension); \
Array<Real>::matrix_iterator sigma_it = \
this->stress(el_type, ghost_type) \
.begin(this->spatial_dimension, this->spatial_dimension); \
\
tangent_mat.resize(this->gradu(el_type, ghost_type).size()); \
\
UInt tangent_size = \
this->getTangentStiffnessVoigtSize(this->spatial_dimension); \
Array<Real>::matrix_iterator tangent_it = \
tangent_mat.begin(tangent_size, tangent_size); \
\
for (; gradu_it != gradu_end; ++gradu_it, ++sigma_it, ++tangent_it) { \
Matrix<Real> & __attribute__((unused)) grad_u = *gradu_it; \
Matrix<Real> & __attribute__((unused)) sigma_tensor = *sigma_it; \
Matrix<Real> & tangent = *tangent_it
#define MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_END }
/* -------------------------------------------------------------------------- */
namespace akantu {
using MaterialFactory =
Factory<Material, ID, UInt, const ID &, SolidMechanicsModel &, const ID &>;
} // namespace akantu
#define INSTANTIATE_MATERIAL_ONLY(mat_name) \
template class mat_name<1>; \
template class mat_name<2>; \
template class mat_name<3>
#define MATERIAL_DEFAULT_PER_DIM_ALLOCATOR(id, mat_name) \
[](UInt dim, const ID &, SolidMechanicsModel & model, \
const ID & id) -> std::unique_ptr<Material> { \
switch (dim) { \
case 1: \
return std::make_unique<mat_name<1>>(model, id); \
case 2: \
return std::make_unique<mat_name<2>>(model, id); \
case 3: \
return std::make_unique<mat_name<3>>(model, id); \
default: \
AKANTU_EXCEPTION("The dimension " \
<< dim << "is not a valid dimension for the material " \
<< #id); \
} \
}
#define INSTANTIATE_MATERIAL(id, mat_name) \
INSTANTIATE_MATERIAL_ONLY(mat_name); \
static bool material_is_alocated_##id = \
MaterialFactory::getInstance().registerAllocator( \
#id, MATERIAL_DEFAULT_PER_DIM_ALLOCATOR(id, mat_name))
#endif /* __AKANTU_MATERIAL_HH__ */
Event Timeline
Log In to Comment