Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90550408
material_igfem_elastic.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 2, 16:30
Size
10 KB
Mime Type
text/x-c
Expires
Mon, Nov 4, 16:30 (2 d)
Engine
blob
Format
Raw Data
Handle
22084558
Attached To
rAKA akantu
material_igfem_elastic.cc
View Options
/**
* @file material_igfem_elastic.cc
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
*
*
* @brief Specializaton of material class for the igfem elastic material
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
*/
/* -------------------------------------------------------------------------- */
#include "material_igfem_elastic.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
MaterialIGFEMElastic
<
dim
>::
MaterialIGFEMElastic
(
SolidMechanicsModel
&
model
,
const
ID
&
id
)
:
Material
(
model
,
id
),
Parent
(
model
,
id
),
E
(
this
->
nb_sub_materials
),
nu
(
this
->
nb_sub_materials
),
lambda
(
"lambda"
,
*
this
),
mu
(
"mu"
,
*
this
),
kpa
(
"kappa"
,
*
this
)
{
AKANTU_DEBUG_IN
();
this
->
initialize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
MaterialIGFEMElastic
<
dim
>::
initialize
()
{
this
->
registerParam
(
"E"
,
E
,
_pat_parsable
|
_pat_modifiable
,
"Young's modulus"
);
this
->
registerParam
(
"nu"
,
nu
,
_pat_parsable
|
_pat_modifiable
,
"Poisson's ratio"
);
/// this->registerParam("Plane_Stress", plane_stress, false, _pat_parsmod, "Is plane stress");
this
->
lambda
.
initialize
(
1
);
this
->
mu
.
initialize
(
1
);
this
->
kpa
.
initialize
(
1
);
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
MaterialIGFEMElastic
<
dim
>::
initMaterial
()
{
AKANTU_DEBUG_IN
();
Parent
::
initMaterial
();
if
(
dim
==
1
)
this
->
nu
.
clear
();
/// set the Poisson ratios to zero
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialIGFEMElastic
<
spatial_dimension
>::
updateElasticInternals
(
GhostType
ghost_type
)
{
SolidMechanicsModelIGFEM
*
igfem_model
=
static_cast
<
SolidMechanicsModelIGFEM
*>
(
this
->
model
);
const
Mesh
&
mesh
=
this
->
model
->
getMesh
();
Array
<
Real
>
nodes_coordinates
(
mesh
.
getNodes
(),
true
);
Array
<
Real
>::
const_vector_iterator
nodes_it
=
nodes_coordinates
.
begin
(
spatial_dimension
);
/// compute the Lamé constants for both sub-materials
Vector
<
Real
>
lambda_per_sub_mat
(
this
->
nb_sub_materials
);
Vector
<
Real
>
mu_per_sub_mat
(
this
->
nb_sub_materials
);
Vector
<
Real
>
kpa_per_sub_mat
(
this
->
nb_sub_materials
);
this
->
updateElasticConstants
(
lambda_per_sub_mat
,
mu_per_sub_mat
,
kpa_per_sub_mat
);
/// loop over all types in the material
typedef
ElementTypeMapArray
<
UInt
>::
type_iterator
iterator
;
iterator
it
=
this
->
element_filter
.
firstType
(
spatial_dimension
,
ghost_type
,
_ek_igfem
);
iterator
last_type
=
this
->
element_filter
.
lastType
(
spatial_dimension
,
ghost_type
,
_ek_igfem
);
UInt
index_1
=
0
;
UInt
index_2
=
0
;
/// loop over all types in the filter
for
(;
it
!=
last_type
;
++
it
)
{
ElementType
el_type
=
*
it
;
UInt
nb_nodes_per_el
=
mesh
.
getNbNodesPerElement
(
el_type
);
UInt
nb_parent_nodes
=
IGFEMHelper
::
getNbParentNodes
(
el_type
);
Vector
<
bool
>
is_inside
(
nb_parent_nodes
);
const
Array
<
UInt
>
&
connectivity
=
mesh
.
getConnectivity
(
el_type
,
ghost_type
);
Array
<
UInt
>::
const_vector_iterator
connec_it
=
connectivity
.
begin
(
nb_nodes_per_el
);
/// get the number of quadrature points for the two sub-elements
UInt
quads_1
=
IGFEMHelper
::
getNbQuadraturePoints
(
el_type
,
0
);
UInt
quads_2
=
IGFEMHelper
::
getNbQuadraturePoints
(
el_type
,
1
);
/// get pointer to internals for given type
Real
*
lambda_ptr
=
this
->
lambda
(
el_type
,
ghost_type
).
storage
();
Real
*
mu_ptr
=
this
->
mu
(
el_type
,
ghost_type
).
storage
();
Real
*
kpa_ptr
=
this
->
kpa
(
el_type
,
ghost_type
).
storage
();
/// loop all elements for the given type
const
Array
<
UInt
>
&
filter
=
this
->
element_filter
(
el_type
,
ghost_type
);
UInt
nb_elements
=
filter
.
getSize
();
for
(
UInt
e
=
0
;
e
<
nb_elements
;
++
e
,
++
connec_it
)
{
for
(
UInt
i
=
0
;
i
<
nb_parent_nodes
;
++
i
)
{
Vector
<
Real
>
node
=
nodes_it
[(
*
connec_it
)(
i
)];
is_inside
(
i
)
=
igfem_model
->
isInside
(
node
,
this
->
name_sub_mat_1
);
}
UInt
orientation
=
IGFEMHelper
::
getElementOrientation
(
el_type
,
is_inside
);
if
(
orientation
)
{
index_1
=
0
;
index_2
=
1
;
}
else
{
index_1
=
1
;
index_2
=
0
;
}
for
(
UInt
q
=
0
;
q
<
quads_1
;
++
q
,
++
lambda_ptr
,
++
mu_ptr
,
++
kpa_ptr
)
{
*
lambda_ptr
=
lambda_per_sub_mat
(
index_1
);
*
mu_ptr
=
mu_per_sub_mat
(
index_1
);
*
kpa_ptr
=
kpa_per_sub_mat
(
index_1
);
}
for
(
UInt
q
=
0
;
q
<
quads_2
;
++
q
,
++
lambda_ptr
,
++
mu_ptr
,
++
kpa_ptr
)
{
*
lambda_ptr
=
lambda_per_sub_mat
(
index_2
);
*
mu_ptr
=
mu_per_sub_mat
(
index_2
);
*
kpa_ptr
=
kpa_per_sub_mat
(
index_2
);
}
}
}
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
MaterialIGFEMElastic
<
dim
>::
updateElasticConstants
(
Vector
<
Real
>
&
lambda_vec
,
Vector
<
Real
>
&
mu_vec
,
Vector
<
Real
>
&
kpa_vec
)
{
for
(
UInt
i
=
0
;
i
<
this
->
nb_sub_materials
;
++
i
)
{
lambda_vec
(
i
)
=
this
->
nu
(
i
)
*
this
->
E
(
i
)
/
((
1
+
this
->
nu
(
i
))
*
(
1
-
2
*
this
->
nu
(
i
)));
mu_vec
(
i
)
=
this
->
E
(
i
)
/
(
2
*
(
1
+
this
->
nu
(
i
)));
kpa_vec
(
i
)
=
lambda_vec
(
i
)
+
2.
/
3.
*
mu_vec
(
i
);
}
}
/* -------------------------------------------------------------------------- */
template
<>
void
MaterialIGFEMElastic
<
2
>::
updateElasticConstants
(
Vector
<
Real
>
&
lambda_vec
,
Vector
<
Real
>
&
mu_vec
,
Vector
<
Real
>
&
kpa_vec
)
{
for
(
UInt
i
=
0
;
i
<
this
->
nb_sub_materials
;
++
i
)
{
lambda_vec
(
i
)
=
this
->
nu
(
i
)
*
this
->
E
(
i
)
/
((
1
+
this
->
nu
(
1
))
*
(
1
-
2
*
this
->
nu
(
i
)));
mu_vec
(
i
)
=
this
->
E
(
i
)
/
(
2
*
(
1
+
this
->
nu
(
i
)));
if
(
this
->
plane_stress
)
lambda_vec
(
i
)
=
this
->
nu
(
i
)
*
this
->
E
(
i
)
/
((
1
+
this
->
nu
(
i
))
*
(
1
-
this
->
nu
(
i
)));
kpa_vec
(
i
)
=
lambda_vec
(
i
)
+
2.
/
3.
*
mu_vec
(
i
);
}
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialIGFEMElastic
<
spatial_dimension
>::
computeStress
(
ElementType
el_type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
Parent
::
computeStress
(
el_type
,
ghost_type
);
if
(
!
this
->
finite_deformation
)
{
/// get pointer to internals
Real
*
lambda_ptr
=
this
->
lambda
(
el_type
,
ghost_type
).
storage
();
Real
*
mu_ptr
=
this
->
mu
(
el_type
,
ghost_type
).
storage
();
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN
(
el_type
,
ghost_type
);
this
->
computeStressOnQuad
(
grad_u
,
sigma
,
*
lambda_ptr
,
*
mu_ptr
);
++
lambda_ptr
;
++
mu_ptr
;
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END
;
}
else
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialIGFEMElastic
<
spatial_dimension
>::
computeTangentModuli
(
__attribute__
((
unused
))
const
ElementType
&
el_type
,
Array
<
Real
>
&
tangent_matrix
,
__attribute__
((
unused
))
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
/// get pointer to internals
Real
*
lambda_ptr
=
this
->
lambda
(
el_type
,
ghost_type
).
storage
();
Real
*
mu_ptr
=
this
->
mu
(
el_type
,
ghost_type
).
storage
();
MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_BEGIN
(
tangent_matrix
);
this
->
computeTangentModuliOnQuad
(
tangent
,
*
lambda_ptr
,
*
mu_ptr
);
++
lambda_ptr
;
++
mu_ptr
;
MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_END
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialIGFEMElastic
<
spatial_dimension
>::
computePotentialEnergy
(
ElementType
el_type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
// MaterialThermal<spatial_dimension>::computePotentialEnergy(el_type, ghost_type);
// if(ghost_type != _not_ghost) return;
// Array<Real>::scalar_iterator epot = this->potential_energy(el_type, ghost_type).begin();
// if (!this->finite_deformation) {
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type);
// this->computePotentialEnergyOnQuad(grad_u, sigma, *epot);
// ++epot;
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END;
// } else {
// Matrix<Real> E(spatial_dimension, spatial_dimension);
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type);
// this->template gradUToGreenStrain<spatial_dimension>(grad_u, E);
// this->computePotentialEnergyOnQuad(E, sigma, *epot);
// ++epot;
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END;
// }
AKANTU_DEBUG_TO_IMPLEMENT
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialIGFEMElastic
<
spatial_dimension
>::
computePotentialEnergyByElement
(
ElementType
type
,
UInt
index
,
Vector
<
Real
>
&
epot_on_quad_points
)
{
// Array<Real>::matrix_iterator gradu_it =
// this->gradu(type).begin(spatial_dimension,
// spatial_dimension);
// Array<Real>::matrix_iterator gradu_end =
// this->gradu(type).begin(spatial_dimension,
// spatial_dimension);
// Array<Real>::matrix_iterator stress_it =
// this->stress(type).begin(spatial_dimension,
// spatial_dimension);
// if (this->finite_deformation)
// stress_it = this->piola_kirchhoff_2(type).begin(spatial_dimension,
// spatial_dimension);
// UInt nb_quadrature_points = this->model->getFEEngine().getNbQuadraturePoints(type);
// gradu_it += index*nb_quadrature_points;
// gradu_end += (index+1)*nb_quadrature_points;
// stress_it += index*nb_quadrature_points;
// Real * epot_quad = epot_on_quad_points.storage();
// Matrix<Real> grad_u(spatial_dimension, spatial_dimension);
// for(;gradu_it != gradu_end; ++gradu_it, ++stress_it, ++epot_quad) {
// if (this->finite_deformation)
// this->template gradUToGreenStrain<spatial_dimension>(*gradu_it, grad_u);
// else
// grad_u.copy(*gradu_it);
// this->computePotentialEnergyOnQuad(grad_u, *stress_it, *epot_quad);
// }
AKANTU_DEBUG_TO_IMPLEMENT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialIGFEMElastic
<
spatial_dimension
>::
onElementsAdded
(
const
Array
<
Element
>
&
element_list
,
const
NewElementsEvent
&
event
)
{
Parent
::
onElementsAdded
(
element_list
,
event
);
updateElasticInternals
(
_not_ghost
);
};
INSTANTIATE_MATERIAL
(
MaterialIGFEMElastic
);
__END_AKANTU__
Event Timeline
Log In to Comment