Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90735313
element.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 07:11
Size
8 KB
Mime Type
text/x-c++
Expires
Wed, Nov 6, 07:11 (2 d)
Engine
blob
Format
Raw Data
Handle
22096169
Attached To
rAKA akantu
element.cc
View Options
/**
* @file element.cc
*
* @author Alejandro M. Aragón <alejandro.aragon@epfl.ch>
*
* @date creation: Fri Jan 04 2013
* @date last modification: Tue May 13 2014
*
* @brief contact element classes
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "element.hh"
#include "aka_math.hh"
#include "aka_geometry.hh"
#if defined(AKANTU_BOOST_CHRONO) && !defined(AKANTU_NDEBUG)
# include <boost/chrono.hpp>
#endif
__BEGIN_AKANTU__
template <>
bool check_penetration<2>(UInt node, const Element* el, SolidMechanicsModel& model) {
typedef Point<2> point_type;
Mesh& mesh = model.getMesh();
const Array<Real> &x = model.getCurrentPosition();
const Array<UInt> &conn = mesh.getConnectivity(el->type);
point_type r(&x(node));
// NOTE: switch on a enumerated type is a sign of a bad
// object-oriented design
switch (el->type) {
case _segment_2:
{
// get element extreme points
point_type p(&x(conn(el->element,0)));
point_type q(&x(conn(el->element,1)));
return left_turn(p, q, r) > 0;
}
break;
default:
cout<<"*** ERROR *** Function signed measure in file "<<__FILE__<<", line "<<__LINE__;
cout<<", is not implemented for element of type "<<el->type<<endl;
cout<<"*** ABORTING *** "<<endl;
exit(1);
break;
}
}
template <>
bool check_penetration<3>(UInt node, const Element* el, SolidMechanicsModel& model) {
typedef Point<3> point_type;
Mesh& mesh = model.getMesh();
const Array<Real> &x = model.getCurrentPosition();
const Array<UInt> &conn = mesh.getConnectivity(el->type);
point_type r(&x(node));
// NOTE: switch on a enumerated type is a sign of a bad
// object-oriented design
switch (el->type) {
case _triangle_3:
{
// get element extreme points
point_type o(&x(conn(el->element,0)));
point_type p(&x(conn(el->element,1)));
point_type q(&x(conn(el->element,2)));
// get signed volume
point_type po = o - p;
point_type pq = q - p;
point_type pr = r - p;
// cross product
point_type c = cross(pq, po);
Real v = pr*c;
return v < 0;
}
break;
default:
cout<<"*** ERROR *** Function signed measure in file "<<__FILE__<<", line "<<__LINE__;
cout<<", is not implemented for element of type "<<el->type<<endl;
cout<<"*** ABORTING *** "<<endl;
exit(1);
break;
}
}
template <>
Point<2> minimize_distance<2>(UInt node, const Element* el, SolidMechanicsModel& model) {
const UInt d = 2;
typedef Point<d> point_type;
const Array<Real> &x = model.getCurrentPosition();
point_type r(&x(node));
// NOTE: switch on a enumerated type is a sign of a bad
// object-oriented design
switch (el->type) {
case _segment_2:
{
#if AKANTU_OPTIMIZATION
Distance_minimzer<_segment_2> data(&x(node), el, model);
return data.point();
#else
AKANTU_DEBUG_ERROR("To use this function you should activate the optimization at compile time");
return Point<2>();
#endif
}
break;
default:
cout<<"*** ERROR *** Function signed measure in file "<<__FILE__<<", line "<<__LINE__;
cout<<", is not implemented for element of type "<<el->type<<endl;
cout<<"*** ABORTING *** "<<endl;
exit(1);
break;
}
assert(false);
return point_type(); // avoid compiler warning: control reaches end of non-void function
}
template <>
Point<3> minimize_distance<3>(UInt node, const Element* el, SolidMechanicsModel& model) {
const UInt d = 3;
typedef Point<d> point_type;
const Array<Real> &x = model.getCurrentPosition();
point_type r(&x(node));
// NOTE: switch on a enumerated type is a sign of a bad
// object-oriented design
switch (el->type) {
case _triangle_3:
{
#if AKANTU_OPTIMIZATION
Distance_minimzer<_triangle_3> data(&x(node), el, model);
#if defined(AKANTU_BOOST_CHRONO) && !defined(AKANTU_NDEBUG)
typedef boost::chrono::high_resolution_clock clock_type;
typedef typename clock_type::time_point time_type;
time_type start = clock_type::now();
#endif
data.optimize();
#if defined(AKANTU_BOOST_CHRONO) && !defined(AKANTU_NDEBUG)
boost::chrono::nanoseconds ns = clock_type::now() - start;
cout<<data.iterations()<<"\t"<<ns.count()<<endl;
#endif
// cout<<data.point()<<endl;
return data.point();
#else
AKANTU_DEBUG_ERROR("To use this function you should activate the optimization at compile time");
return Point<3>();
#endif
// const UInt nb_nodes = 3;
//
// // get triangle coordinates from element and point coordinates
// Mesh& mesh = model.getMesh();
// std::vector<point_type> pts(nb_nodes);
//
// const Array<UInt> &conn = mesh.getConnectivity(el->type);
// for (UInt i=0; i<nb_nodes; ++i)
// for (UInt j=0; j<d; ++j)
// pts.at(i)[j] = x(conn(el->element,i),j);
//
// // get closest point
// time_type start = clock_type::now();
//
// Point<3> q = naive_closest_point_to_triangle(r,pts[0],pts[1],pts[2]);
//
// boost::chrono::nanoseconds ns = clock_type::now() - start;
// cout<<ns.count()<<endl;
//
//// static unsigned int k = 0;
//// if (sqrt((q - data.point()).sq_norm()) > 1e-2) {
//// cout<<++k<<endl;
//// cout<<"difference"<<endl;
//// cout<<data.point()<<endl;
//// cout<<q<<endl;
//// cout<<" iter -> "<<data.iterations()<<endl;
//// }
//
//
// return q;
// const UInt nb_nodes = 3;
//
// // get triangle coordinates from element and point coordinates
// Mesh& mesh = model.getMesh();
// std::vector<point_type> pts(nb_nodes);
//
// const Array<UInt> &conn = mesh.getConnectivity(el->type);
// for (UInt i=0; i<nb_nodes; ++i)
// for (UInt j=0; j<d; ++j)
// pts.at(i)[j] = x(conn(el->element,i),j);
//
// // get closest point
// time_type start2 = clock_type::now();
//
// Point<3> q = closest_point_to_triangle(r,pts[0],pts[1],pts[2]);
//
// boost::chrono::nanoseconds ns2 = clock_type::now() - start2;
// cout<<ns2.count()<<endl;
// cout<<q<<endl;
//
// static unsigned int k = 0;
// Real diff = sqrt((q - data.point()).sq_norm());
// if (diff > 1e-8) {
// cout<<"diff -> "<<diff<<endl;
// cout<<++k<<endl;
// cout<<data.point()<<endl;
// cout<<q<<endl;
// cout<<" iter -> "<<data.iterations()<<endl;
// }
//
//
// return q;
}
break;
case _triangle_6:
{
#if AKANTU_OPTIMIZATION
Distance_minimzer<_triangle_6> data(&x(node), el, model);
#if defined(AKANTU_BOOST_CHRONO) && !defined(AKANTU_NDEBUG)
time_type start = clock_type::now();
#endif
data.optimize();
#if defined(AKANTU_BOOST_CHRONO) && !defined(AKANTU_NDEBUG)
boost::chrono::nanoseconds ns = clock_type::now() - start;
cout<<data.iterations()<<"\t"<<ns.count()<<endl;
#endif
return data.point();
#else
AKANTU_DEBUG_ERROR("To use this function you should activate the optimization at compile time");
return Point<3>();
#endif
}
break;
default:
cout<<"*** ERROR *** Function signed measure in file "<<__FILE__<<", line "<<__LINE__;
cout<<", is not implemented for element of type "<<el->type<<endl;
cout<<"*** ABORTING *** "<<endl;
exit(1);
break;
}
assert(false);
return point_type(); // avoid compiler warning: control reaches end of non-void function
}
__END_AKANTU__
Event Timeline
Log In to Comment