Page MenuHomec4science

heat_transfer_model.hh
No OneTemporary

File Metadata

Created
Mon, Jun 3, 13:33

heat_transfer_model.hh

/**
* @file heat_transfer_model.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Lucas Frerot <lucas.frerot@epfl.ch>
* @author Srinivasa Babu Ramisetti <srinivasa.ramisetti@epfl.ch>
* @author Rui Wang <rui.wang@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Sun May 01 2011
* @date last modification: Tue Sep 02 2014
*
* @brief Model of Heat Transfer
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_HEAT_TRANSFER_MODEL_HH__
#define __AKANTU_HEAT_TRANSFER_MODEL_HH__
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "aka_types.hh"
#include "aka_voigthelper.hh"
#include "aka_memory.hh"
#include "model.hh"
#include "integrator_gauss.hh"
#include "shape_lagrange.hh"
#include "dumpable.hh"
#include "parsable.hh"
#include "solver.hh"
namespace akantu {
class IntegrationScheme1stOrder;
}
__BEGIN_AKANTU__
struct HeatTransferModelOptions : public ModelOptions {
HeatTransferModelOptions(AnalysisMethod analysis_method = _explicit_lumped_capacity ) : analysis_method(analysis_method) {}
AnalysisMethod analysis_method;
};
extern const HeatTransferModelOptions default_heat_transfer_model_options;
class HeatTransferModel : public Model, public DataAccessor, public Parsable {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
typedef FEEngineTemplate<IntegratorGauss,ShapeLagrange> MyFEEngineType;
HeatTransferModel(Mesh & mesh,
UInt spatial_dimension = _all_dimensions,
const ID & id = "heat_transfer_model",
const MemoryID & memory_id = 0);
virtual ~HeatTransferModel() ;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
/// generic function to initialize everything ready for explicit dynamics
void initFull(const ModelOptions & options = default_heat_transfer_model_options);
/// initialize the fem object of the boundary
void initFEEngineBoundary(bool create_surface = true);
/// read one material file to instantiate all the materials
void readMaterials();
/// allocate all vectors
void initArrays();
/// register the tags associated with the parallel synchronizer
void initParallel(MeshPartition * partition, DataAccessor * data_accessor=NULL);
/// initialize the model
void initModel();
/// init PBC synchronizer
void initPBC();
/// initialize the solver and the jacobian_matrix (called by initImplicit)
void initSolver(SolverOptions & solver_options);
/// initialize the stuff for the implicit solver
void initImplicit(SolverOptions & solver_options = _solver_no_options);
/// function to print the contain of the class
virtual void printself(__attribute__ ((unused)) std::ostream & stream,
__attribute__ ((unused)) int indent = 0) const {};
/* ------------------------------------------------------------------------ */
/* Methods for explicit */
/* ------------------------------------------------------------------------ */
public:
/// compute and get the stable time step
Real getStableTimeStep();
/// compute the heat flux
void updateResidual();
/// calculate the lumped capacity vector for heat transfer problem
void assembleCapacityLumped();
/// update the temperature from the temperature rate
void explicitPred();
/// update the temperature rate from the increment
void explicitCorr();
/// solve the system in temperature rate @f$C\delta \dot T = q_{n+1} - C \dot T_{n}@f$
/// this function needs to be run for dynamics
void solveExplicitLumped();
// /// initialize the heat flux
// void initializeResidual(Array<Real> &temp);
// /// initialize temperature
// void initializeTemperature(Array<Real> &temp);
/* ------------------------------------------------------------------------ */
/* Methods for implicit */
/* ------------------------------------------------------------------------ */
public:
/// solve the static equilibrium
void solveStatic();
//
/// assemble the stiffness matrix
void assembleStiffnessMatrix();
private:
/// compute the heat flux on ghost types
void updateResidual(const GhostType & ghost_type);
/// calculate the lumped capacity vector for heat transfer problem (w ghosttype)
void assembleCapacityLumped(const GhostType & ghost_type);
/// assemble the stiffness matrix (w/ ghost type)
template <UInt dim>
void assembleStiffnessMatrix(const GhostType & ghost_type);
/// assemble the stiffness matrix
template <UInt dim>
void assembleStiffnessMatrix(const ElementType & type, const GhostType & ghost_type);
/// compute the conductivity tensor for each quadrature point in an array
void computeConductivityOnQuadPoints(const GhostType & ghost_type);
/// compute vector k \grad T for each quadrature point
void computeKgradT(const GhostType & ghost_type);
/// compute the thermal energy
Real computeThermalEnergyByNode();
/* ------------------------------------------------------------------------ */
/* Data Accessor inherited members */
/* ------------------------------------------------------------------------ */
public:
inline UInt getNbDataForElements(const Array<Element> & elements,
SynchronizationTag tag) const;
inline void packElementData(CommunicationBuffer & buffer,
const Array<Element> & elements,
SynchronizationTag tag) const;
inline void unpackElementData(CommunicationBuffer & buffer,
const Array<Element> & elements,
SynchronizationTag tag);
inline UInt getNbDataToPack(SynchronizationTag tag) const;
inline UInt getNbDataToUnpack(SynchronizationTag tag) const;
inline void packData(CommunicationBuffer & buffer,
const UInt index,
SynchronizationTag tag) const;
inline void unpackData(CommunicationBuffer & buffer,
const UInt index,
SynchronizationTag tag);
/* ------------------------------------------------------------------------ */
/* Dumpable interface */
/* ------------------------------------------------------------------------ */
public:
virtual dumper::Field * createNodalFieldReal(const std::string & field_name,
const std::string & group_name,
bool padding_flag);
virtual dumper::Field * createNodalFieldBool(const std::string & field_name,
const std::string & group_name,
bool padding_flag);
virtual dumper::Field * createElementalField(const std::string & field_name,
const std::string & group_name,
bool padding_flag,
const ElementKind & kind);
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
inline FEEngine & getFEEngineBoundary(std::string name = "");
AKANTU_GET_MACRO(Density, density, Real);
AKANTU_GET_MACRO(Capacity, capacity, Real);
/// get the dimension of the system space
AKANTU_GET_MACRO(SpatialDimension, spatial_dimension, UInt);
/// get the current value of the time step
AKANTU_GET_MACRO(TimeStep, time_step, Real);
/// set the value of the time step
AKANTU_SET_MACRO(TimeStep, time_step, Real);
/// get the assembled heat flux
AKANTU_GET_MACRO(Residual, *residual, Array<Real>&);
/// get the lumped capacity
AKANTU_GET_MACRO(CapacityLumped, *capacity_lumped, Array<Real>&);
/// get the boundary vector
AKANTU_GET_MACRO(BlockedDOFs, *blocked_dofs, Array<bool>&);
/// get stiffness matrix
AKANTU_GET_MACRO(StiffnessMatrix, *stiffness_matrix, const SparseMatrix&);
/// get the external heat rate vector
AKANTU_GET_MACRO(ExternalHeatRate, *external_heat_rate, Array<Real>&);
/// get the temperature gradient
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(TemperatureGradient, temperature_gradient, Real);
/// get the conductivity on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(ConductivityOnQpoints, conductivity_on_qpoints, Real);
/// get the conductivity on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(TemperatureOnQpoints, temperature_on_qpoints, Real);
/// internal variables
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(KGradtOnQpoints, k_gradt_on_qpoints, Real);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(IntBtKgT, int_bt_k_gT, Real);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(BtKgT, bt_k_gT, Real);
/// get the temperature
AKANTU_GET_MACRO(Temperature, *temperature, Array<Real> &);
/// get the temperature derivative
AKANTU_GET_MACRO(TemperatureRate, *temperature_rate, Array<Real> &);
/// get the equation number Array<Int>
AKANTU_GET_MACRO(EquationNumber, *equation_number, const Array<Int> &);
/// get the energy denominated by thermal
Real getEnergy(const std::string & energy_id, const ElementType & type, UInt index);
/// get the energy denominated by thermal
Real getEnergy(const std::string & energy_id);
/// get the thermal energy for a given element
Real getThermalEnergy(const ElementType & type, UInt index);
/// get the thermal energy for a given element
Real getThermalEnergy();
protected:
/* ----------------------------------------------------------------------- */
template<class iterator>
void getThermalEnergy(iterator Eth,
Array<Real>::const_iterator<Real> T_it,
Array<Real>::const_iterator<Real> T_end) const;
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
private:
IntegrationScheme1stOrder * integrator;
/// time step
Real time_step;
/// temperatures array
Array<Real> * temperature;
/// temperatures derivatives array
Array<Real> * temperature_rate;
/// increment array (@f$\delta \dot T@f$ or @f$\delta T@f$)
Array<Real> * increment;
/// stiffness matrix
SparseMatrix * stiffness_matrix;
/// jacobian matrix
SparseMatrix * jacobian_matrix;
/// the density
Real density;
/// the speed of the changing temperature
ElementTypeMapArray<Real> temperature_gradient;
/// temperature field on quadrature points
ElementTypeMapArray<Real> temperature_on_qpoints;
/// conductivity tensor on quadrature points
ElementTypeMapArray<Real> conductivity_on_qpoints;
/// vector k \grad T on quad points
ElementTypeMapArray<Real> k_gradt_on_qpoints;
/// vector \int \grad N k \grad T
ElementTypeMapArray<Real> int_bt_k_gT;
/// vector \grad N k \grad T
ElementTypeMapArray<Real> bt_k_gT;
/// external flux vector
Array<Real> * external_heat_rate;
/// residuals array
Array<Real> * residual;
/// position of a dof in the K matrix
Array<Int> * equation_number;
//lumped vector
Array<Real> * capacity_lumped;
/// boundary vector
Array<bool> * blocked_dofs;
//realtime
Real time;
///capacity
Real capacity;
//conductivity matrix
Matrix<Real> conductivity;
//linear variation of the conductivity (for temperature dependent conductivity)
Real conductivity_variation;
// reference temperature for the interpretation of temperature variation
Real T_ref;
//the biggest parameter of conductivity matrix
Real conductivitymax;
/// thermal energy by element
ElementTypeMapArray<Real> thermal_energy;
/// Solver
Solver * solver;
/// analysis method
AnalysisMethod method;
};
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
#if defined (AKANTU_INCLUDE_INLINE_IMPL)
# include "heat_transfer_model_inline_impl.cc"
#endif
/// standard output stream operator
inline std::ostream & operator <<(std::ostream & stream, const HeatTransferModel & _this)
{
_this.printself(stream);
return stream;
}
__END_AKANTU__
#endif /* __AKANTU_HEAT_TRANSFER_MODEL_HH__ */

Event Timeline