Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91270228
shape_cohesive_inline_impl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 9, 13:05
Size
12 KB
Mime Type
text/x-c++
Expires
Mon, Nov 11, 13:05 (2 d)
Engine
blob
Format
Raw Data
Handle
22205221
Attached To
rAKA akantu
shape_cohesive_inline_impl.hh
View Options
/**
* @file shape_cohesive_inline_impl.hh
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Fri Feb 03 2012
* @date last modification: Tue Sep 29 2020
*
* @brief ShapeCohesive inline implementation
*
*
* @section LICENSE
*
* Copyright (©) 2010-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "mesh_iterators.hh"
#include "shape_cohesive.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_SHAPE_COHESIVE_INLINE_IMPL_HH_
#define AKANTU_SHAPE_COHESIVE_INLINE_IMPL_HH_
namespace
akantu
{
/* -------------------------------------------------------------------------- */
inline
ShapeLagrange
<
_ek_cohesive
>::
ShapeLagrange
(
const
Mesh
&
mesh
,
UInt
spatial_dimension
,
const
ID
&
id
)
:
ShapeLagrangeBase
(
mesh
,
spatial_dimension
,
_ek_cohesive
,
id
)
{}
#define INIT_SHAPE_FUNCTIONS(type) \
setIntegrationPointsByType<type>(integration_points, ghost_type); \
precomputeShapesOnIntegrationPoints<type>(nodes, ghost_type); \
precomputeShapeDerivativesOnIntegrationPoints<type>(nodes, ghost_type);
/* -------------------------------------------------------------------------- */
inline
void
ShapeLagrange
<
_ek_cohesive
>::
initShapeFunctions
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
ElementType
type
,
GhostType
ghost_type
)
{
AKANTU_BOOST_COHESIVE_ELEMENT_SWITCH
(
INIT_SHAPE_FUNCTIONS
);
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeLagrange
<
_ek_cohesive
>::
computeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
/*unused*/
,
const
Matrix
<
Real
>
&
integration_points
,
Array
<
Real
>
&
shape_derivatives
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
UInt
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
UInt
spatial_dimension
=
ElementClass
<
type
>::
getNaturalSpaceDimension
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
UInt
nb_points
=
integration_points
.
cols
();
UInt
nb_element
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
size
();
AKANTU_DEBUG_ASSERT
(
shape_derivatives
.
getNbComponent
()
==
size_of_shapesd
,
"The shapes_derivatives array does not have the correct "
<<
"number of component"
);
shape_derivatives
.
resize
(
nb_element
*
nb_points
);
Real
*
shapesd_val
=
shape_derivatives
.
storage
();
auto
compute
=
[
&
](
const
auto
&
el
)
{
auto
ptr
=
shapesd_val
+
el
*
nb_points
*
size_of_shapesd
;
Tensor3
<
Real
>
B
(
ptr
,
spatial_dimension
,
nb_nodes_per_element
,
nb_points
);
ElementClass
<
type
>::
computeDNDS
(
integration_points
,
B
);
};
for_each_element
(
nb_element
,
filter_elements
,
compute
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
inline
void
ShapeLagrange
<
_ek_cohesive
>::
computeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
Array
<
Real
>
&
shape_derivatives
,
ElementType
type
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
#define AKANTU_COMPUTE_SHAPES(type) \
computeShapeDerivativesOnIntegrationPoints<type>( \
nodes, integration_points, shape_derivatives, ghost_type, \
filter_elements);
AKANTU_BOOST_COHESIVE_ELEMENT_SWITCH
(
AKANTU_COMPUTE_SHAPES
);
#undef AKANTU_COMPUTE_SHAPES
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeLagrange
<
_ek_cohesive
>::
precomputeShapesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
Matrix
<
Real
>
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
UInt
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
Array
<
Real
>
&
shapes_tmp
=
shapes
.
alloc
(
0
,
size_of_shapes
,
itp_type
,
ghost_type
);
this
->
computeShapesOnIntegrationPoints
<
type
>
(
nodes
,
natural_coords
,
shapes_tmp
,
ghost_type
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeLagrange
<
_ek_cohesive
>::
precomputeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
Matrix
<
Real
>
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
UInt
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
Array
<
Real
>
&
shapes_derivatives_tmp
=
shapes_derivatives
.
alloc
(
0
,
size_of_shapesd
,
itp_type
,
ghost_type
);
this
->
computeShapeDerivativesOnIntegrationPoints
<
type
>
(
nodes
,
natural_coords
,
shapes_derivatives_tmp
,
ghost_type
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
extractNodalToElementField
(
const
Array
<
Real
>
&
nodal_f
,
Array
<
Real
>
&
elemental_f
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
UInt
nb_nodes_per_itp_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
UInt
nb_degree_of_freedom
=
nodal_f
.
getNbComponent
();
UInt
nb_element
=
this
->
mesh
.
getNbElement
(
type
,
ghost_type
);
const
auto
&
conn_array
=
this
->
mesh
.
getConnectivity
(
type
,
ghost_type
);
auto
conn
=
conn_array
.
begin
(
conn_array
.
getNbComponent
()
/
2
,
2
);
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
size
();
}
elemental_f
.
resize
(
nb_element
);
Array
<
Real
>::
matrix_iterator
u_it
=
elemental_f
.
begin
(
nb_degree_of_freedom
,
nb_nodes_per_itp_element
);
ReduceFunction
reduce_function
;
auto
compute
=
[
&
](
const
auto
&
el
)
{
Matrix
<
Real
>
&
u
=
*
u_it
;
Matrix
<
UInt
>
el_conn
(
conn
[
el
]);
// compute the average/difference of the nodal field loaded from cohesive
// element
for
(
UInt
n
=
0
;
n
<
el_conn
.
rows
();
++
n
)
{
UInt
node_plus
=
el_conn
(
n
,
0
);
UInt
node_minus
=
el_conn
(
n
,
1
);
for
(
UInt
d
=
0
;
d
<
nb_degree_of_freedom
;
++
d
)
{
Real
u_plus
=
nodal_f
(
node_plus
,
d
);
Real
u_minus
=
nodal_f
(
node_minus
,
d
);
u
(
d
,
n
)
=
reduce_function
(
u_plus
,
u_minus
);
}
}
++
u_it
;
};
for_each_element
(
nb_element
,
filter_elements
,
compute
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
interpolateOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
UInt
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
this
->
shapes
.
exists
(
itp_type
,
ghost_type
),
"No shapes for the type "
<<
this
->
shapes
.
printType
(
itp_type
,
ghost_type
));
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
this
->
extractNodalToElementField
<
type
,
ReduceFunction
>
(
in_u
,
u_el
,
ghost_type
,
filter_elements
);
this
->
template
interpolateElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
out_uq
,
ghost_type
,
shapes
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
variationOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
nablauq
,
UInt
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
this
->
shapes_derivatives
.
exists
(
itp_type
,
ghost_type
),
"No shapes for the type "
<<
this
->
shapes_derivatives
.
printType
(
itp_type
,
ghost_type
));
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
this
->
extractNodalToElementField
<
type
,
ReduceFunction
>
(
in_u
,
u_el
,
ghost_type
,
filter_elements
);
this
->
template
gradientElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
nablauq
,
ghost_type
,
shapes_derivatives
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
computeNormalsOnIntegrationPoints
(
const
Array
<
Real
>
&
u
,
Array
<
Real
>
&
normals_u
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
UInt
nb_element
=
this
->
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
nb_points
=
this
->
integration_points
(
type
,
ghost_type
).
cols
();
UInt
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
size
();
}
normals_u
.
resize
(
nb_points
*
nb_element
);
Array
<
Real
>
tangents_u
(
0
,
(
spatial_dimension
*
(
spatial_dimension
-
1
)));
if
(
spatial_dimension
>
1
)
{
tangents_u
.
resize
(
nb_element
*
nb_points
);
this
->
template
variationOnIntegrationPoints
<
type
,
ReduceFunction
>
(
u
,
tangents_u
,
spatial_dimension
,
ghost_type
,
filter_elements
);
}
Real
*
tangent
=
tangents_u
.
storage
();
if
(
spatial_dimension
==
3
)
{
for
(
auto
&
normal
:
make_view
(
normals_u
,
spatial_dimension
))
{
Math
::
vectorProduct3
(
tangent
,
tangent
+
spatial_dimension
,
normal
.
storage
());
normal
/=
normal
.
norm
();
tangent
+=
spatial_dimension
*
2
;
}
}
else
if
(
spatial_dimension
==
2
)
{
for
(
auto
&
normal
:
make_view
(
normals_u
,
spatial_dimension
))
{
Vector
<
Real
>
a1
(
tangent
,
spatial_dimension
);
normal
(
0
)
=
-
a1
(
1
);
normal
(
1
)
=
a1
(
0
);
normal
.
normalize
();
tangent
+=
spatial_dimension
;
}
}
else
if
(
spatial_dimension
==
1
)
{
const
auto
facet_type
=
Mesh
::
getFacetType
(
type
);
const
auto
&
mesh_facets
=
mesh
.
getMeshFacets
();
const
auto
&
facets
=
mesh_facets
.
getSubelementToElement
(
type
,
ghost_type
);
const
auto
&
segments
=
mesh_facets
.
getElementToSubelement
(
facet_type
,
ghost_type
);
Real
values
[
2
];
for
(
auto
el
:
arange
(
nb_element
))
{
if
(
filter_elements
!=
empty_filter
)
{
el
=
filter_elements
(
el
);
}
for
(
UInt
p
=
0
;
p
<
2
;
++
p
)
{
Element
facet
=
facets
(
el
,
p
);
Element
segment
=
segments
(
facet
.
element
)[
0
];
Vector
<
Real
>
barycenter
(
values
+
p
,
1
);
mesh
.
getBarycenter
(
segment
,
barycenter
);
}
Real
difference
=
values
[
0
]
-
values
[
1
];
AKANTU_DEBUG_ASSERT
(
difference
!=
0.
,
"Error in normal computation for cohesive elements"
);
normals_u
(
el
)
=
difference
/
std
::
abs
(
difference
);
}
}
AKANTU_DEBUG_OUT
();
}
}
// namespace akantu
#endif
/* AKANTU_SHAPE_COHESIVE_INLINE_IMPL_HH_ */
Event Timeline
Log In to Comment