Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91682146
mesh.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 13, 10:23
Size
21 KB
Mime Type
text/x-c++
Expires
Fri, Nov 15, 10:23 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22277106
Attached To
rAKA akantu
mesh.cc
View Options
/**
* @file mesh.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author David Simon Kammer <david.kammer@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Tue Feb 20 2018
*
* @brief class handling meshes
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_config.hh"
/* -------------------------------------------------------------------------- */
#include "element_class.hh"
#include "group_manager_inline_impl.cc"
#include "mesh.hh"
#include "mesh_global_data_updater.hh"
#include "mesh_io.hh"
#include "mesh_iterators.hh"
#include "mesh_utils.hh"
/* -------------------------------------------------------------------------- */
#include "communicator.hh"
#include "element_synchronizer.hh"
#include "facet_synchronizer.hh"
#include "mesh_utils_distribution.hh"
#include "node_synchronizer.hh"
#include "periodic_node_synchronizer.hh"
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
#include "dumper_field.hh"
#include "dumper_internal_material_field.hh"
#endif
/* -------------------------------------------------------------------------- */
#include <limits>
#include <sstream>
/* -------------------------------------------------------------------------- */
namespace akantu {
/* -------------------------------------------------------------------------- */
Mesh::Mesh(UInt spatial_dimension, const ID & id, const MemoryID & memory_id,
Communicator & communicator)
: Memory(id, memory_id),
GroupManager(*this, id + ":group_manager", memory_id),
MeshData("mesh_data", id, memory_id),
connectivities("connectivities", id, memory_id),
ghosts_counters("ghosts_counters", id, memory_id),
normals("normals", id, memory_id), spatial_dimension(spatial_dimension),
size(spatial_dimension, 0.), bbox(spatial_dimension),
bbox_local(spatial_dimension), communicator(&communicator) {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
Mesh::Mesh(UInt spatial_dimension, Communicator & communicator, const ID & id,
const MemoryID & memory_id)
: Mesh(spatial_dimension, id, memory_id, communicator) {
AKANTU_DEBUG_IN();
this->nodes =
std::make_shared<Array<Real>>(0, spatial_dimension, id + ":coordinates");
this->nodes_flags = std::make_shared<Array<NodeFlag>>(0, 1, NodeFlag::_normal,
id + ":nodes_flags");
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
Mesh::Mesh(UInt spatial_dimension, const ID & id, const MemoryID & memory_id)
: Mesh(spatial_dimension, Communicator::getStaticCommunicator(), id,
memory_id) {}
/* -------------------------------------------------------------------------- */
Mesh::Mesh(UInt spatial_dimension, const std::shared_ptr<Array<Real>> & nodes,
const ID & id, const MemoryID & memory_id)
: Mesh(spatial_dimension, id, memory_id,
Communicator::getStaticCommunicator()) {
this->nodes = nodes;
this->nb_global_nodes = this->nodes->size();
this->nodes_to_elements.resize(nodes->size());
for (auto & node_set : nodes_to_elements) {
node_set = std::make_unique<std::set<Element>>();
}
this->computeBoundingBox();
}
/* -------------------------------------------------------------------------- */
void Mesh::getBarycenters(Array<Real> & barycenter, const ElementType & type,
const GhostType & ghost_type) const {
barycenter.resize(getNbElement(type, ghost_type));
for (auto && data : enumerate(make_view(barycenter, spatial_dimension))) {
getBarycenter(Element{type, UInt(std::get<0>(data)), ghost_type},
std::get<1>(data));
}
}
class FacetGlobalConnectivityAccessor : public DataAccessor<Element> {
public:
FacetGlobalConnectivityAccessor(Mesh & mesh)
: global_connectivity("global_connectivity",
"facet_connectivity_synchronizer") {
global_connectivity.initialize(
mesh, _spatial_dimension = _all_dimensions, _with_nb_element = true,
_with_nb_nodes_per_element = true, _element_kind = _ek_regular);
mesh.getGlobalConnectivity(global_connectivity);
}
UInt getNbData(const Array<Element> & elements,
const SynchronizationTag & tag) const {
UInt size = 0;
if (tag == SynchronizationTag::_smmc_facets_conn) {
UInt nb_nodes = Mesh::getNbNodesPerElementList(elements);
size += nb_nodes * sizeof(UInt);
}
return size;
}
void packData(CommunicationBuffer & buffer, const Array<Element> & elements,
const SynchronizationTag & tag) const {
if (tag == SynchronizationTag::_smmc_facets_conn) {
for (const auto & element : elements) {
auto & conns = global_connectivity(element.type, element.ghost_type);
for (auto n : arange(conns.getNbComponent())) {
buffer << conns(element.element, n);
}
}
}
}
void unpackData(CommunicationBuffer & buffer, const Array<Element> & elements,
const SynchronizationTag & tag) {
if (tag == SynchronizationTag::_smmc_facets_conn) {
for (const auto & element : elements) {
auto & conns = global_connectivity(element.type, element.ghost_type);
for (auto n : arange(conns.getNbComponent())) {
buffer >> conns(element.element, n);
}
}
}
}
AKANTU_GET_MACRO(GlobalConnectivity, (global_connectivity), decltype(auto));
protected:
ElementTypeMapArray<UInt> global_connectivity;
};
/* -------------------------------------------------------------------------- */
Mesh & Mesh::initMeshFacets(const ID & id) {
AKANTU_DEBUG_IN();
if (mesh_facets) {
AKANTU_DEBUG_OUT();
return *mesh_facets;
}
mesh_facets = std::make_unique<Mesh>(spatial_dimension, this->nodes,
getID() + ":" + id, getMemoryID());
mesh_facets->mesh_parent = this;
mesh_facets->is_mesh_facets = true;
mesh_facets->nodes_flags = this->nodes_flags;
mesh_facets->nodes_global_ids = this->nodes_global_ids;
MeshUtils::buildAllFacets(*this, *mesh_facets, 0);
if (mesh.isDistributed()) {
mesh_facets->is_distributed = true;
mesh_facets->element_synchronizer = std::make_unique<FacetSynchronizer>(
*mesh_facets, mesh.getElementSynchronizer());
FacetGlobalConnectivityAccessor data_accessor(*mesh_facets);
/// communicate
mesh_facets->element_synchronizer->synchronizeOnce(
data_accessor, SynchronizationTag::_smmc_facets_conn);
/// flip facets
MeshUtils::flipFacets(*mesh_facets, data_accessor.getGlobalConnectivity(),
_ghost);
}
/// transfers the the mesh physical names to the mesh facets
if (not this->hasData("physical_names")) {
AKANTU_DEBUG_OUT();
return *mesh_facets;
}
auto & mesh_phys_data = this->getData<std::string>("physical_names");
auto & phys_data = mesh_facets->getData<std::string>("physical_names");
phys_data.initialize(*mesh_facets, _spatial_dimension = spatial_dimension - 1,
_with_nb_element = true);
ElementTypeMapArray<Real> barycenters(getID(), "temporary_barycenters");
barycenters.initialize(*mesh_facets, _nb_component = spatial_dimension,
_spatial_dimension = spatial_dimension - 1,
_with_nb_element = true);
for (auto && ghost_type : ghost_types) {
for (auto && type :
barycenters.elementTypes(spatial_dimension - 1, ghost_type)) {
mesh_facets->getBarycenters(barycenters(type, ghost_type), type,
ghost_type);
}
}
for_each_element(
mesh,
[&](auto && element) {
Vector<Real> barycenter(spatial_dimension);
mesh.getBarycenter(element, barycenter);
auto norm_barycenter = barycenter.norm();
auto tolerance = Math::getTolerance();
if (norm_barycenter > tolerance)
tolerance *= norm_barycenter;
const auto & element_to_facet = mesh_facets->getElementToSubelement(
element.type, element.ghost_type);
Vector<Real> barycenter_facet(spatial_dimension);
auto range = enumerate(make_view(
barycenters(element.type, element.ghost_type), spatial_dimension));
#ifndef AKANTU_NDEBUG
auto min_dist = std::numeric_limits<Real>::max();
#endif
// this is a spacial search coded the most inefficient way.
auto facet =
std::find_if(range.begin(), range.end(), [&](auto && data) {
auto facet = std::get<0>(data);
if (element_to_facet(facet)[1] == ElementNull)
return false;
auto norm_distance = barycenter.distance(std::get<1>(data));
#ifndef AKANTU_NDEBUG
min_dist = std::min(min_dist, norm_distance);
#endif
return (norm_distance < tolerance);
});
if (facet == range.end()) {
AKANTU_DEBUG_INFO("The element "
<< element
<< " did not find its associated facet in the "
"mesh_facets! Try to decrease math tolerance. "
"The closest element was at a distance of "
<< min_dist);
return;
}
// set physical name
phys_data(Element{element.type, UInt(std::get<0>(*facet)),
element.ghost_type}) = mesh_phys_data(element);
},
_spatial_dimension = spatial_dimension - 1);
mesh_facets->createGroupsFromMeshData<std::string>("physical_names");
AKANTU_DEBUG_OUT();
return *mesh_facets;
}
/* -------------------------------------------------------------------------- */
void Mesh::defineMeshParent(const Mesh & mesh) {
AKANTU_DEBUG_IN();
this->mesh_parent = &mesh;
this->is_mesh_facets = true;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
Mesh::~Mesh() = default;
/* -------------------------------------------------------------------------- */
void Mesh::read(const std::string & filename, const MeshIOType & mesh_io_type) {
AKANTU_DEBUG_ASSERT(not is_distributed,
"You cannot read a mesh that is already distributed");
MeshIO mesh_io;
mesh_io.read(filename, *this, mesh_io_type);
auto types =
this->elementTypes(spatial_dimension, _not_ghost, _ek_not_defined);
auto it = types.begin();
auto last = types.end();
if (it == last)
AKANTU_DEBUG_WARNING(
"The mesh contained in the file "
<< filename << " does not seem to be of the good dimension."
<< " No element of dimension " << spatial_dimension << " where read.");
this->makeReady();
}
/* -------------------------------------------------------------------------- */
void Mesh::write(const std::string & filename,
const MeshIOType & mesh_io_type) {
MeshIO mesh_io;
mesh_io.write(filename, *this, mesh_io_type);
}
/* -------------------------------------------------------------------------- */
void Mesh::makeReady() {
this->nb_global_nodes = this->nodes->size();
this->computeBoundingBox();
this->nodes_flags->resize(nodes->size(), NodeFlag::_normal);
this->nodes_to_elements.resize(nodes->size());
for (auto & node_set : nodes_to_elements) {
node_set = std::make_unique<std::set<Element>>();
}
}
/* -------------------------------------------------------------------------- */
void Mesh::printself(std::ostream & stream, int indent) const {
std::string space(indent, AKANTU_INDENT);
stream << space << "Mesh [" << std::endl;
stream << space << " + id : " << getID() << std::endl;
stream << space << " + spatial dimension : " << this->spatial_dimension
<< std::endl;
stream << space << " + nodes [" << std::endl;
nodes->printself(stream, indent + 2);
stream << space << " + connectivities [" << std::endl;
connectivities.printself(stream, indent + 2);
stream << space << " ]" << std::endl;
GroupManager::printself(stream, indent + 1);
stream << space << "]" << std::endl;
}
/* -------------------------------------------------------------------------- */
void Mesh::computeBoundingBox() {
AKANTU_DEBUG_IN();
bbox_local.reset();
for (auto & pos : make_view(*nodes, spatial_dimension)) {
// if(!isPureGhostNode(i))
bbox_local += pos;
}
if (this->is_distributed) {
bbox = bbox_local.allSum(*communicator);
} else {
bbox = bbox_local;
}
size = bbox.size();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void Mesh::initNormals() {
normals.initialize(*this, _nb_component = spatial_dimension,
_spatial_dimension = spatial_dimension,
_element_kind = _ek_not_defined);
}
/* -------------------------------------------------------------------------- */
void Mesh::getGlobalConnectivity(
ElementTypeMapArray<UInt> & global_connectivity) {
AKANTU_DEBUG_IN();
for (auto && ghost_type : ghost_types) {
for (auto type :
global_connectivity.elementTypes(_spatial_dimension = _all_dimensions,
_element_kind = _ek_not_defined, _ghost_type = ghost_type)) {
if (not connectivities.exists(type, ghost_type))
continue;
auto & local_conn = connectivities(type, ghost_type);
auto & g_connectivity = global_connectivity(type, ghost_type);
UInt nb_nodes = local_conn.size() * local_conn.getNbComponent();
std::transform(local_conn.begin_reinterpret(nb_nodes),
local_conn.end_reinterpret(nb_nodes),
g_connectivity.begin_reinterpret(nb_nodes),
[&](UInt l) -> UInt { return this->getNodeGlobalId(l); });
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
DumperIOHelper & Mesh::getGroupDumper(const std::string & dumper_name,
const std::string & group_name) {
if (group_name == "all")
return this->getDumper(dumper_name);
else
return element_groups[group_name]->getDumper(dumper_name);
}
/* -------------------------------------------------------------------------- */
template <typename T>
ElementTypeMap<UInt> Mesh::getNbDataPerElem(ElementTypeMapArray<T> & arrays) {
ElementTypeMap<UInt> nb_data_per_elem;
for (auto type : arrays.elementTypes()) {
UInt nb_elements = this->getNbElement(type);
auto & array = arrays(type);
nb_data_per_elem(type) = array.getNbComponent() * array.size();
nb_data_per_elem(type) /= nb_elements;
}
return nb_data_per_elem;
}
/* -------------------------------------------------------------------------- */
template ElementTypeMap<UInt>
Mesh::getNbDataPerElem(ElementTypeMapArray<Real> & array);
template ElementTypeMap<UInt>
Mesh::getNbDataPerElem(ElementTypeMapArray<UInt> & array);
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
template <typename T>
std::shared_ptr<dumper::Field>
Mesh::createFieldFromAttachedData(const std::string & field_id,
const std::string & group_name,
const ElementKind & element_kind) {
std::shared_ptr<dumper::Field> field;
ElementTypeMapArray<T> * internal = nullptr;
try {
internal = &(this->getData<T>(field_id));
} catch (...) {
return nullptr;
}
ElementTypeMap<UInt> nb_data_per_elem = this->getNbDataPerElem(*internal);
field = this->createElementalField<T, dumper::InternalMaterialField>(
*internal, group_name, this->spatial_dimension, element_kind,
nb_data_per_elem);
return field;
}
template std::shared_ptr<dumper::Field>
Mesh::createFieldFromAttachedData<Real>(const std::string & field_id,
const std::string & group_name,
const ElementKind & element_kind);
template std::shared_ptr<dumper::Field>
Mesh::createFieldFromAttachedData<UInt>(const std::string & field_id,
const std::string & group_name,
const ElementKind & element_kind);
#endif
/* -------------------------------------------------------------------------- */
void Mesh::distributeImpl(
Communicator & communicator,
std::function<Int(const Element &, const Element &)> edge_weight_function
[[gnu::unused]],
std::function<Int(const Element &)> vertex_weight_function
[[gnu::unused]]) {
AKANTU_DEBUG_ASSERT(is_distributed == false,
"This mesh is already distribute");
this->communicator = &communicator;
this->element_synchronizer = std::make_unique<ElementSynchronizer>(
*this, this->getID() + ":element_synchronizer", this->getMemoryID(),
true);
this->node_synchronizer = std::make_unique<NodeSynchronizer>(
*this, this->getID() + ":node_synchronizer", this->getMemoryID(), true);
Int psize = this->communicator->getNbProc();
if (psize > 1) {
#ifdef AKANTU_USE_SCOTCH
Int prank = this->communicator->whoAmI();
if (prank == 0) {
MeshPartitionScotch partition(*this, spatial_dimension);
partition.partitionate(psize, edge_weight_function,
vertex_weight_function);
MeshUtilsDistribution::distributeMeshCentralized(*this, 0, partition);
} else {
MeshUtilsDistribution::distributeMeshCentralized(*this, 0);
}
#else
if (psize > 1) {
AKANTU_ERROR("Cannot distribute a mesh without a partitioning tool");
}
#endif
}
// if (psize > 1)
this->is_distributed = true;
this->computeBoundingBox();
}
/* -------------------------------------------------------------------------- */
void Mesh::getAssociatedElements(const Array<UInt> & node_list,
Array<Element> & elements) {
for (const auto & node : node_list)
for (const auto & element : *nodes_to_elements[node])
elements.push_back(element);
}
/* -------------------------------------------------------------------------- */
void Mesh::fillNodesToElements() {
Element e;
UInt nb_nodes = nodes->size();
for (UInt n = 0; n < nb_nodes; ++n) {
if (this->nodes_to_elements[n])
this->nodes_to_elements[n]->clear();
else
this->nodes_to_elements[n] = std::make_unique<std::set<Element>>();
}
for (auto ghost_type : ghost_types) {
e.ghost_type = ghost_type;
for (const auto & type :
elementTypes(spatial_dimension, ghost_type, _ek_not_defined)) {
e.type = type;
UInt nb_element = this->getNbElement(type, ghost_type);
Array<UInt>::const_iterator<Vector<UInt>> conn_it =
connectivities(type, ghost_type)
.begin(Mesh::getNbNodesPerElement(type));
for (UInt el = 0; el < nb_element; ++el, ++conn_it) {
e.element = el;
const Vector<UInt> & conn = *conn_it;
for (UInt n = 0; n < conn.size(); ++n)
nodes_to_elements[conn(n)]->insert(e);
}
}
}
}
/* -------------------------------------------------------------------------- */
std::tuple<UInt, UInt>
Mesh::updateGlobalData(NewNodesEvent & nodes_event,
NewElementsEvent & elements_event) {
if (global_data_updater)
return this->global_data_updater->updateData(nodes_event, elements_event);
else {
return std::make_tuple(nodes_event.getList().size(),
elements_event.getList().size());
}
}
/* -------------------------------------------------------------------------- */
void Mesh::registerGlobalDataUpdater(
std::unique_ptr<MeshGlobalDataUpdater> && global_data_updater) {
this->global_data_updater = std::move(global_data_updater);
}
/* -------------------------------------------------------------------------- */
void Mesh::eraseElements(const Array<Element> & elements) {
ElementTypeMap<UInt> last_element;
RemovedElementsEvent event(*this, "new_numbering", AKANTU_CURRENT_FUNCTION);
auto & remove_list = event.getList();
auto & new_numbering = event.getNewNumbering();
for (auto && el : elements) {
if (el.ghost_type != _not_ghost) {
auto & count = ghosts_counters(el);
--count;
if (count > 0)
continue;
}
remove_list.push_back(el);
if (not last_element.exists(el.type, el.ghost_type)) {
UInt nb_element = mesh.getNbElement(el.type, el.ghost_type);
last_element(nb_element - 1, el.type, el.ghost_type);
auto & numbering =
new_numbering.alloc(nb_element, 1, el.type, el.ghost_type);
for (auto && pair : enumerate(numbering)) {
std::get<1>(pair) = std::get<0>(pair);
}
}
UInt & pos = last_element(el.type, el.ghost_type);
auto & numbering = new_numbering(el.type, el.ghost_type);
numbering(el.element) = UInt(-1);
numbering(pos) = el.element;
--pos;
}
this->sendEvent(event);
}
} // namespace akantu
Event Timeline
Log In to Comment