Page MenuHomec4science

test_phase_solid_coupling.cc
No OneTemporary

File Metadata

Created
Sun, Jun 30, 09:12

test_phase_solid_coupling.cc

/**
* @file tets_phase_field_2d.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Oct 1 2018
*
* @brief test of the class PhaseFieldModel on the 2d square
*
* @section LICENSE
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "non_linear_solver.hh"
#include "solid_mechanics_model.hh"
#include "phase_field_model.hh"
#include "material.hh"
#include "material_phasefield.hh"
/* -------------------------------------------------------------------------- */
#include <iostream>
#include <fstream>
/* -------------------------------------------------------------------------- */
using namespace akantu;
const UInt spatial_dimension = 2;
/* -------------------------------------------------------------------------- */
void applyDisplacement(SolidMechanicsModel &);
void computeStrainOnQuadPoints(SolidMechanicsModel &, PhaseFieldModel &, const GhostType &);
void computeDamageOnQuadPoints(SolidMechanicsModel &, PhaseFieldModel &, const GhostType &);
void gradUToEpsilon(const Matrix<Real> &, Matrix<Real> &);
/* -------------------------------------------------------------------------- */
int main(int argc, char *argv[]) {
std::ofstream os("data.csv");
os << "#disp stress damage" << std::endl;
initialize("material_coupling.dat", argc, argv);
Mesh mesh(spatial_dimension);
mesh.read("test_one_element.msh");
SolidMechanicsModel model(mesh);
model.initFull(_analysis_method = _static);
PhaseFieldModel phase(mesh);
phase.initFull(_analysis_method = _static);
model.setBaseName("phase_solid");
model.addDumpField("stress");
model.addDumpField("grad_u");
model.addDumpField("damage");
model.addDumpField("displacement");
model.dump();
UInt nbSteps = 1000;
Real increment = 1e-4;
auto & damage = model.getMaterial(0).getArray<Real>("damage", _quadrangle_4);
auto & stress = model.getMaterial(0).getArray<Real>("stress", _quadrangle_4);
for (UInt s = 1; s < nbSteps; ++s) {
applyDisplacement(model);
model.solveStep();
computeStrainOnQuadPoints(model, phase, _not_ghost);
phase.solveStep();
computeDamageOnQuadPoints(model, phase, _not_ghost);
os << s*increment << " " << stress(0, 0) << " " << damage(0) << std::endl;
model.dump();
}
os.close();
finalize();
return EXIT_SUCCESS;
}
/* -------------------------------------------------------------------------- */
void applyDisplacement(SolidMechanicsModel & model) {
auto & displacement = model.getDisplacement();
auto & positions = model.getMesh().getNodes();
auto & blocked_dofs = model.getBlockedDOFs();
for (UInt n = 0; n < model.getMesh().getNbNodes(); ++n) {
if (positions(n, 1) == -0.5) {
displacement(n, 0) = 0;
displacement(n, 1) = 0;
blocked_dofs(n, 0) = true;
blocked_dofs(n ,1) = true;
}
else {
displacement(n, 0) = 0;
displacement(n, 1) += 1.e-4;
blocked_dofs(n, 0) = true;
blocked_dofs(n ,1) = true;
}
}
}
/* -------------------------------------------------------------------------- */
void computeStrainOnQuadPoints(SolidMechanicsModel & solid, PhaseFieldModel & phase, const GhostType & ghost_type) {
auto & mesh = solid.getMesh();
auto & strain_on_qpoints = phase.getStrain();
auto & gradu_on_qpoints = solid.getMaterial(0).getGradU();
for (auto & type: mesh.elementTypes(spatial_dimension, ghost_type)) {
auto & strain_on_qpoints_vect = strain_on_qpoints(type, ghost_type);
auto & gradu_on_qpoints_vect = gradu_on_qpoints(type, ghost_type);
for (auto && values:
zip(make_view(strain_on_qpoints_vect, spatial_dimension, spatial_dimension),
make_view(gradu_on_qpoints_vect, spatial_dimension, spatial_dimension))) {
auto & strain = std::get<0>(values);
auto & grad_u = std::get<1>(values);
gradUToEpsilon(grad_u, strain);
}
}
}
/* -------------------------------------------------------------------------- */
void computeDamageOnQuadPoints(SolidMechanicsModel & solid, PhaseFieldModel & phase, const GhostType & ghost_type) {
auto & fem = phase.getFEEngine();
auto & mesh = phase.getMesh();
switch (spatial_dimension) {
case 1: {
auto & mat = static_cast<MaterialPhaseField<1> &>(solid.getMaterial(0));
auto & damage = mat.getDamage();
for (auto & type: mesh.elementTypes(spatial_dimension, ghost_type)) {
auto & damage_on_qpoints_vect = damage(type, ghost_type);
fem.interpolateOnIntegrationPoints(phase.getDamage(), damage_on_qpoints_vect,
1, type, ghost_type);
}
break;
}
case 2: {
auto & mat = static_cast<MaterialPhaseField<2> &>(solid.getMaterial(0));
auto & damage = mat.getDamage();
for (auto & type: mesh.elementTypes(spatial_dimension, ghost_type)) {
auto & damage_on_qpoints_vect = damage(type, ghost_type);
fem.interpolateOnIntegrationPoints(phase.getDamage(), damage_on_qpoints_vect,
1, type, ghost_type);
}
break;
}
default:
auto & mat = static_cast<MaterialPhaseField<3> &>(solid.getMaterial(0));
break;
}
}
/* -------------------------------------------------------------------------- */
void gradUToEpsilon(const Matrix<Real> & grad_u, Matrix<Real> & epsilon) {
for (UInt i=0; i < spatial_dimension; ++i) {
for (UInt j = 0; j < spatial_dimension; ++j)
epsilon(i, j) = 0.5 * (grad_u(i, j) + grad_u(j, i));
}
}

Event Timeline