Page MenuHomec4science

time_step_solver_default.cc
No OneTemporary

File Metadata

Created
Fri, Jun 28, 09:19

time_step_solver_default.cc

/**
* @file time_step_solver_default.cc
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date Wed Sep 16 10:20:55 2015
*
* @brief Default implementation of the time step solver
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "time_step_solver_default.hh"
#include "mesh.hh"
#include "dof_manager_default.hh"
#include "sparse_matrix_aij.hh"
#include "pseudo_time.hh"
#include "integration_scheme_1st_order.hh"
#include "integration_scheme_2nd_order.hh"
/* -------------------------------------------------------------------------- */
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
TimeStepSolverDefault::TimeStepSolverDefault(
DOFManagerDefault & dof_manager, const TimeStepSolverType & type,
NonLinearSolver & non_linear_solver, const ID & id, UInt memory_id)
: TimeStepSolver(dof_manager, type, non_linear_solver, id, memory_id),
dof_manager(dof_manager), is_mass_lumped(false) {
switch (type) {
case _tsst_dynamic:
break;
case _tsst_dynamic_lumped:
this->is_mass_lumped = true;
break;
case _tsst_static:
/// initialize a static time solver for allback dofs
break;
}
}
/* -------------------------------------------------------------------------- */
void TimeStepSolverDefault::setIntegrationScheme(
const ID & dof_id, const IntegrationSchemeType & type,
IntegrationScheme::SolutionType solution_type) {
if (this->integration_schemes.find(dof_id) !=
this->integration_schemes.end()) {
AKANTU_EXCEPTION("Their DOFs "
<< dof_id
<< " have already an integration scheme associated");
}
IntegrationScheme * integration_scheme = NULL;
if (this->is_mass_lumped) {
switch (type) {
case _ist_forward_euler: {
integration_scheme = new ForwardEuler(dof_manager, dof_id);
break;
}
case _ist_central_difference: {
integration_scheme = new CentralDifference(dof_manager, dof_id);
break;
}
default:
AKANTU_EXCEPTION(
"This integration scheme cannot be used in lumped dynamic");
}
} else {
switch (type) {
case _ist_pseudo_time: {
integration_scheme = new PseudoTime(dof_manager, dof_id);
break;
}
case _ist_forward_euler: {
integration_scheme = new ForwardEuler(dof_manager, dof_id);
break;
}
case _ist_trapezoidal_rule_1: {
integration_scheme = new TrapezoidalRule1(dof_manager, dof_id);
break;
}
case _ist_backward_euler: {
integration_scheme = new BackwardEuler(dof_manager, dof_id);
break;
}
case _ist_central_difference: {
integration_scheme = new CentralDifference(dof_manager, dof_id);
break;
}
case _ist_fox_goodwin: {
integration_scheme = new FoxGoodwin(dof_manager, dof_id);
break;
}
case _ist_trapezoidal_rule_2: {
integration_scheme = new TrapezoidalRule2(dof_manager, dof_id);
break;
}
case _ist_linear_acceleration: {
integration_scheme = new LinearAceleration(dof_manager, dof_id);
break;
}
// Write a c++11 version of the constructor with initializer list that
// contains the arguments for the integration scheme
case _ist_generalized_trapezoidal:
case _ist_newmark_beta:
AKANTU_EXCEPTION(
"This time step solvers cannot be created with this constructor");
}
}
this->integration_schemes[dof_id] = integration_scheme;
this->solution_types[dof_id] = solution_type;
this->integration_schemes_owner.insert(dof_id);
}
/* -------------------------------------------------------------------------- */
TimeStepSolverDefault::~TimeStepSolverDefault() {
DOFsIntegrationSchemesOwner::iterator it =
this->integration_schemes_owner.begin();
DOFsIntegrationSchemesOwner::iterator end =
this->integration_schemes_owner.end();
for (; it != end; ++it) {
delete this->integration_schemes[*it];
}
this->integration_schemes.clear();
}
/* -------------------------------------------------------------------------- */
void TimeStepSolverDefault::solveStep(SolverCallback & solver_callback) {
this->solver_callback = &solver_callback;
this->non_linear_solver.solve(*this);
this->solver_callback = NULL;
}
/* -------------------------------------------------------------------------- */
void TimeStepSolverDefault::predictor() {
AKANTU_DEBUG_IN();
TimeStepSolver::predictor();
DOFsIntegrationSchemes::iterator integration_scheme_it =
this->integration_schemes.begin();
DOFsIntegrationSchemes::iterator integration_scheme_end =
this->integration_schemes.end();
for (; integration_scheme_it != integration_scheme_end;
++integration_scheme_it) {
integration_scheme_it->second->predictor(this->time_step);
}
// UInt nb_degree_of_freedom = u.getSize() * u.getNbComponent();
// Array<Real>::scalar_iterator incr_it =
// increment.begin_reinterpret(nb_degree_of_freedom);
// Array<Real>::const_scalar_iterator u_it =
// u.begin_reinterpret(nb_degree_of_freedom);
// Array<Real>::const_scalar_iterator u_end =
// u.end_reinterpret(nb_degree_of_freedom);
// for (; u_it != u_end; ++u_it, ++incr_it) {
// *incr_it = *u_it - *incr_it;
// }
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void TimeStepSolverDefault::corrector() {
AKANTU_DEBUG_IN();
TimeStepSolver::corrector();
DOFsIntegrationSchemes::iterator integration_scheme_it =
this->integration_schemes.begin();
DOFsIntegrationSchemes::iterator integration_scheme_end =
this->integration_schemes.end();
for (; integration_scheme_it != integration_scheme_end;
++integration_scheme_it) {
IntegrationScheme::SolutionType solution_type =
this->solution_types[integration_scheme_it->first];
integration_scheme_it->second->corrector(
solution_type, this->time_step);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void TimeStepSolverDefault::assembleJacobian() {
AKANTU_DEBUG_IN();
TimeStepSolver::assembleJacobian();
DOFsIntegrationSchemes::iterator integration_scheme_it =
this->integration_schemes.begin();
DOFsIntegrationSchemes::iterator integration_scheme_end =
this->integration_schemes.end();
for (; integration_scheme_it != integration_scheme_end;
++integration_scheme_it) {
IntegrationScheme::SolutionType solution_type =
this->solution_types[integration_scheme_it->first];
integration_scheme_it->second->assembleJacobian(solution_type,
this->time_step);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void TimeStepSolverDefault::assembleResidual() {
AKANTU_DEBUG_IN();
TimeStepSolver::assembleResidual();
DOFsIntegrationSchemes::iterator integration_scheme_it =
this->integration_schemes.begin();
DOFsIntegrationSchemes::iterator integration_scheme_end =
this->integration_schemes.end();
for (; integration_scheme_it != integration_scheme_end;
++integration_scheme_it) {
integration_scheme_it->second->assembleResidual(this->is_mass_lumped);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
__END_AKANTU__

Event Timeline