Page MenuHomec4science

solid_contact_explicit.cc
No OneTemporary

File Metadata

Created
Wed, Nov 6, 19:55

solid_contact_explicit.cc

/**
* @file contact_mechanics_penalty.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Jan 24 2019
* @date last modification: Mon Jan 24 2019
*
* @brief contact mechanics model with penalty resolution
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include <fstream>
#include <iostream>
/* -------------------------------------------------------------------------- */
#include "non_linear_solver.hh"
#include "contact_mechanics_model.hh"
#include "solid_mechanics_model.hh"
#include "sparse_matrix.hh"
#include "solver_callback.hh"
/* -------------------------------------------------------------------------- */
using namespace akantu;
class ContactSolverCallback
: public SolverCallback {
public:
ContactSolverCallback(SolidMechanicsModel &, ContactMechanicsModel &);
public:
void assembleMatrix(const ID &) override;
void assembleResidual() override;
void assembleLumpedMatrix(const ID &) override;
MatrixType getMatrixType(const ID &) override;
private:
SolidMechanicsModel & solid;
ContactMechanicsModel & contact;
};
/* -------------------------------------------------------------------------- */
ContactSolverCallback::ContactSolverCallback(SolidMechanicsModel & solid,
ContactMechanicsModel & contact)
: SolverCallback(), solid(solid), contact(contact) {
}
/* -------------------------------------------------------------------------- */
void ContactSolverCallback::assembleMatrix(const ID & matrix_id) {
if (matrix_id == "K") {
}
}
/* -------------------------------------------------------------------------- */
void ContactSolverCallback::assembleLumpedMatrix(const ID & matrix_id) {
}
/* -------------------------------------------------------------------------- */
void ContactSolverCallback::assembleResidual() {
/* ------------------------------------------------------------------------ */
// computes the internal forces
solid.assembleInternalForces();
solid.getDOFManager().assembleToResidual("displacement",
solid.getExternalForce(), 1);
solid.getDOFManager().assembleToResidual("displacement",
solid.getInternalForce(), 1);
}
/* -------------------------------------------------------------------------- */
MatrixType ContactSolverCallback::getMatrixType(const ID & matrix_id) {
return _symmetric;
}
/* -------------------------------------------------------------------------- */
int main(int argc, char *argv[]) {
initialize("material_implicit.dat", argc, argv);
const UInt spatial_dimension = 2;
Mesh mesh(spatial_dimension);
mesh.read("hertz_implicit_2d.msh");
SolidMechanicsModel solid(mesh);
solid.initFull(_analysis_method = _static);
solid.setBaseName("static");
solid.addDumpFieldVector("displacement");
solid.addDumpField("blocked_dofs");
solid.addDumpField("external_force");
solid.addDumpField("internal_force");
solid.applyBC(BC::Dirichlet::FixedValue(0.0, _x), "top_body");
solid.applyBC(BC::Dirichlet::IncrementValue(-0.001, _y), "top_body");
solid.applyBC(BC::Dirichlet::FixedValue(0.0, _x), "bottom");
solid.applyBC(BC::Dirichlet::FixedValue(0.0, _y), "bottom");
auto & solver = solid.getNonLinearSolver();
solver.set("max_iterations", 1000);
solver.set("threshold", 1e-8);
solver.set("convergence_type", _scc_residual);
auto & solid_stiffness =
const_cast<SparseMatrix &>(solid.getDOFManager().getNewMatrix("K", _symmetric));
//solid.assembleInternalForces();
solid.assembleStiffnessMatrix();
auto current_position = solid.getCurrentPosition();
ContactMechanicsModel contact(mesh, current_position);
contact.initFull(_analysis_method = _implicit_contact);
contact.setBaseNameToDumper("contact_mechanics", "contact");
contact.addDumpFieldVectorToDumper("contact_mechanics", "contact_force");
contact.addDumpFieldVectorToDumper("contact_mechanics", "external_force");
contact.addDumpFieldToDumper("contact_mechanics", "gaps");
contact.addDumpFieldToDumper("contact_mechanics", "areas");
contact.search();
contact.assembleInternalForces();
contact.assembleStiffnessMatrix();
contact.dump("paraview_all");
contact.dump("contact_mechanics");
Array<Real> & contact_force = contact.getInternalForce();
Array<Real> & external_force = solid.getExternalForce();
Array<bool> & blocked_dofs = solid.getBlockedDOFs();
for (auto && values: zip(make_view(external_force),
make_view(contact_force),
make_view(blocked_dofs)) ) {
auto & ext_f = std::get<0>(values);
auto & cont_f = std::get<1>(values);
auto & blocked = std::get<2>(values);
if (!blocked) {
ext_f = cont_f;
}
}
ContactSolverCallback callback(solid, contact);
auto & contact_stiffness =
const_cast<SparseMatrix &>(contact.getDOFManager().getMatrix("K"));
//auto & solid_stiffness =
// const_cast<SparseMatrix &>(solid.getDOFManager().getNewMatrix("K", _symmetric));
solid_stiffness.add(contact_stiffness);
solid.solveStep(callback);
contact.dump("paraview_all");
finalize();
return EXIT_SUCCESS;
}

Event Timeline