Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93127841
structural_mechanics_dynamics.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 26, 10:08
Size
4 KB
Mime Type
text/x-python
Expires
Thu, Nov 28, 10:08 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
21898696
Attached To
rAKA akantu
structural_mechanics_dynamics.py
View Options
#!/usr/bin/env python
__copyright__
=
(
"Copyright (©) 2021-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)"
"Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)"
)
__license__
=
"LGPLv3"
import
numpy
as
np
try
:
import
matplotlib.pyplot
as
plt
has_matplotlib
=
True
except
ImportError
:
has_matplotlib
=
False
import
akantu
as
aka
# ### Creating the Mesh
# Create a mesh for the two dimensional case
el_type
=
aka
.
_bernoulli_beam_2
beam
=
aka
.
Mesh
(
2
)
# We now create the connectivity array for the beam.
beam
.
addConnectivityType
(
el_type
)
# We need a `MeshAccessor` in order to change the size of the mesh entities.
beamAcc
=
aka
.
MeshAccessor
(
beam
)
# Now we create the array to store the nodes and the connectivities and give
# them their size.
nb_elem
=
40
L
=
2
beamAcc
.
resizeConnectivity
(
nb_elem
,
el_type
)
beamAcc
.
resizeNodes
(
nb_elem
+
1
)
# #### Setting the Nodes
Nodes
=
beam
.
getNodes
()
length
=
L
/
nb_elem
Nodes
[:,
:]
=
0.
Nodes
[:,
0
]
=
np
.
arange
(
nb_elem
+
1
)
*
length
# #### Setting the Connections
Conn
=
beam
.
getConnectivity
(
el_type
)
for
e
in
range
(
nb_elem
):
Conn
[
e
,
:]
=
[
e
,
e
+
1
]
# #### Ready
# We have to make the mesh ready.
beamAcc
.
makeReady
()
# ### Creating the Model
model
=
aka
.
StructuralMechanicsModel
(
beam
)
if
el_type
==
aka
.
_bernoulli_beam_3
:
normal
=
beam
.
getDataReal
(
"extra_normal"
,
el_type
)
for
e
in
range
(
nb_elem
):
normal
[
e
,
:]
=
[
0
,
0
,
1
]
# #### Setting up the Modell
# ##### Creating and Inserting the Materials
mat1
=
aka
.
StructuralMaterial
()
mat1
.
E
=
1e9
mat1
.
rho
=
10.
mat1
.
I
=
1.
# noqa: E741
mat1
.
Iz
=
1.
mat1
.
Iy
=
1.
mat1
.
A
=
1.
mat1
.
GJ
=
1.
model
.
addMaterial
(
mat1
,
'mat1'
)
# ##### Initializing the Model
model
.
initFull
(
aka
.
AnalysisMethod
.
_implicit_dynamic
)
# ##### Assigning the Materials
materials
=
model
.
getElementMaterial
(
el_type
)
materials
[:,
:]
=
0
# ##### Setting Boundaries
# Neumann
F
=
1e4
no_print
=
int
(
nb_elem
/
2
)
# Apply a force of `10` at the last (right most) node.
forces
=
model
.
getExternalForce
()
forces
[:,
:]
=
0
forces
[
no_print
,
1
]
=
F
# Dirichlets
# Block all dofs of the first node, since it is fixed.
# All other nodes have no restrictions
boundary
=
model
.
getBlockedDOFs
()
boundary
[:,
:]
=
False
boundary
[
0
,
0
]
=
True
boundary
[
0
,
1
]
=
True
if
el_type
==
aka
.
_bernoulli_beam_3
:
boundary
[
0
,
2
]
=
True
boundary
[
nb_elem
,
1
]
=
True
# ### Solving the System
# Set up the system
deltaT
=
1e-6
model
.
setTimeStep
(
deltaT
)
solver
=
model
.
getNonLinearSolver
()
solver
.
set
(
"max_iterations"
,
100
)
solver
.
set
(
"threshold"
,
1e-8
)
solver
.
set
(
"convergence_type"
,
aka
.
SolveConvergenceCriteria
.
solution
)
model
.
assembleMatrix
(
"M"
)
M_
=
model
.
getDOFManager
()
.
getMatrix
(
"M"
)
M
=
aka
.
AkantuSparseMatrix
(
M_
)
model
.
assembleMatrix
(
"K"
)
K_
=
model
.
getDOFManager
()
.
getMatrix
(
"K"
)
K
=
aka
.
AkantuSparseMatrix
(
K_
)
C_
=
model
.
getDOFManager
()
.
getMatrix
(
"C"
)
C_
.
add
(
M_
,
0.00001
)
C_
.
add
(
K_
,
0.00001
)
def
analytical_solution
(
time
,
L
=
1.
,
rho
=
1.
,
E
=
1.
,
A
=
1.
,
I
=
1.
,
F
=
1.
):
# noqa: E741
"""Compute the analytical solution of the beam bending at a give time."""
omega
=
np
.
pi
**
2
/
L
**
2
*
np
.
sqrt
(
E
*
I
/
rho
)
sum
=
0.
N
=
110
for
n
in
range
(
1
,
N
,
2
):
sum
+=
(
1.
-
np
.
cos
(
n
*
n
*
omega
*
time
))
/
n
**
4
return
2.
*
F
*
L
**
3
/
np
.
pi
**
4
/
E
/
I
*
sum
# Perform N time steps.
# At each step records the displacement of all three nodes in x direction.
N
=
900
mat1
=
model
.
getMaterial
(
'mat1'
)
disp
=
model
.
getDisplacement
()
velo
=
model
.
getVelocity
()
disp
[:,
:]
=
0.
displs
=
np
.
zeros
(
N
)
ekin
=
np
.
zeros
(
N
)
epot
=
np
.
zeros
(
N
)
ework
=
np
.
zeros
(
N
)
_ework
=
0.
for
i
in
range
(
1
,
N
):
model
.
solveStep
()
displs
[
i
]
=
disp
[
no_print
,
1
]
_ework
+=
F
*
velo
[
no_print
,
1
]
*
deltaT
ekin
[
i
]
=
model
.
getEnergy
(
"kinetic"
)
epot
[
i
]
=
model
.
getEnergy
(
"potential"
)
ework
[
i
]
=
_ework
def
sol
(
x
):
"""Wrap the call to the analytical solution using mat1."""
return
analytical_solution
(
x
,
L
=
L
,
rho
=
mat1
.
rho
,
E
=
mat1
.
E
,
A
=
mat1
.
A
,
I
=
mat1
.
I
,
F
=
F
)
if
has_matplotlib
:
times
=
np
.
arange
(
N
)
*
deltaT
plt
.
plot
(
times
,
sol
(
times
))
plt
.
plot
(
times
,
displs
)
plt
.
plot
(
times
,
displs
-
sol
(
times
))
# What I do not fully understand is why the middle node first go backwards
# until it goes forward. I could imagine that there is some vibration,
# because everything is in rest.
np
.
max
(
displs
-
sol
(
times
))
plt
.
plot
(
times
,
ekin
+
epot
)
plt
.
plot
(
times
,
ework
)
Event Timeline
Log In to Comment