Page MenuHomec4science

coupler_solid_phasefield.hh
No OneTemporary

File Metadata

Created
Fri, Nov 1, 02:54

coupler_solid_phasefield.hh

/**
* @file solid_phase_coupler.hh
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Fri Sep 28 2018
* @date last modification: Fri Sep 28 2018
*
* @brief class for coupling of solid mechancis and phasefield model
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "boundary_condition.hh"
#include "data_accessor.hh"
#include "fe_engine.hh"
#include "material.hh"
#include "material_phasefield.hh"
#include "model.hh"
#include "phase_field_model.hh"
#include "solid_mechanics_model.hh"
#include "sparse_matrix.hh"
#include "time_step_solver.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_COUPLER_SOLID_PHASEFIELD_HH__
#define __AKANTU_COUPLER_SOLID_PHASEFIELD_HH__
/* ------------------------------------------------------------------------ */
/* Coupling : Solid Mechanics / PhaseField */
/* ------------------------------------------------------------------------ */
namespace akantu {
template <ElementKind kind, class IntegrationOrderFunctor>
class IntegratorGauss;
template <ElementKind kind> class ShapeLagrange;
class DOFManager;
} // namespace akantu
namespace akantu {
class CouplerSolidPhaseField
: public Model,
public DataAccessor<Element>,
public DataAccessor<UInt>,
public BoundaryCondition<CouplerSolidPhaseField> {
/* ------------------------------------------------------------------------ */
/* Constructor/Destructors */
/* ------------------------------------------------------------------------ */
using MyFEEngineType = FEEngineTemplate<IntegratorGauss, ShapeLagrange>;
public:
CouplerSolidPhaseField(
Mesh & mesh, UInt spatial_dimension = _all_dimensions,
const ID & id = "coupler_solid_phasefield",
const MemoryID & memory_id = 0,
const ModelType model_type = ModelType::_coupler_solid_phasefield);
~CouplerSolidPhaseField() override;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
protected:
/// initialize the complete model
void initFullImpl(const ModelOptions & options) override;
/// initialize the modelType
void initModel() override;
/// get some default values for derived classes
std::tuple<ID, TimeStepSolverType>
getDefaultSolverID(const AnalysisMethod & method) override;
/* ------------------------------------------------------------------------ */
/* Solver Interface */
/* ------------------------------------------------------------------------ */
public:
/// assembles the contact stiffness matrix
virtual void assembleStiffnessMatrix();
/// assembles the contant internal forces
virtual void assembleInternalForces();
public:
/// computes damage on quad points for solid mechanics model from
/// damage array from phasefield model
void computeDamageOnQuadPoints(const GhostType &);
/// computes strain on quadrature points for phasefield model from
/// displacement gradient from solid mechanics model
void computeStrainOnQuadPoints(const GhostType & ghost_type);
/// solve the coupled model
void solve(const ID & solid_solver_id = "", const ID & phase_solver_id = "");
private:
/// computes small strain from displacement gradient
void gradUToEpsilon(const Matrix<Real> & grad_u, Matrix<Real> & epsilon);
/// test the convergence criteria
bool checkConvergence(Array<Real> &, Array<Real> &, Array<Real> &,
Array<Real> &);
protected:
/// callback for the solver, this adds f_{ext} - f_{int} to the residual
void assembleResidual() override;
/// callback for the solver, this adds f_{ext} or f_{int} to the residual
void assembleResidual(const ID & residual_part) override;
bool canSplitResidual() override { return true; }
/// get the type of matrix needed
MatrixType getMatrixType(const ID & matrix_id) override;
/// callback for the solver, this assembles different matrices
void assembleMatrix(const ID & matrix_id) override;
/// callback for the solver, this assembles the stiffness matrix
void assembleLumpedMatrix(const ID & matrix_id) override;
/// callback for the model to instantiate the matricess when needed
void initSolver(TimeStepSolverType, NonLinearSolverType) override;
/// callback for the solver, this is called at beginning of solve
void predictor() override;
/// callback for the solver, this is called at end of solve
void corrector() override;
/// callback for the solver, this is called at beginning of solve
void beforeSolveStep() override;
/// callback for the solver, this is called at end of solve
void afterSolveStep(bool converged = true) override;
/// solve the coupled model
//void solveStep(const ID & solver_id = "") override;
/// solve a step using a given pre instantiated time step solver and
/// non linear solver with a user defined callback instead of the
/// model itself /!\ This can mess up everything
//void solveStep(SolverCallback & callback, const ID & solver_id = "") override;
/* ------------------------------------------------------------------------ */
/* Mass matrix for solid mechanics model */
/* ------------------------------------------------------------------------ */
public:
/// assemble the lumped mass matrix
void assembleMassLumped();
/// assemble the mass matrix for consistent mass resolutions
void assembleMass();
protected:
/// assemble the lumped mass matrix for local and ghost elements
void assembleMassLumped(GhostType ghost_type);
/// assemble the mass matrix for either _ghost or _not_ghost elements
void assembleMass(GhostType ghost_type);
protected:
/* --------------------------------------------------------------------------
*/
TimeStepSolverType getDefaultSolverType() const override;
/* --------------------------------------------------------------------------
*/
ModelSolverOptions
getDefaultSolverOptions(const TimeStepSolverType & type) const;
public:
bool isDefaultSolverExplicit() { return method == _explicit_lumped_mass; }
/* ------------------------------------------------------------------------ */
public:
// DataAccessor<Element>
UInt getNbData(const Array<Element> &,
const SynchronizationTag &) const override {
return 0;
}
void packData(CommunicationBuffer &, const Array<Element> &,
const SynchronizationTag &) const override {}
void unpackData(CommunicationBuffer &, const Array<Element> &,
const SynchronizationTag &) override {}
UInt getNbData(__attribute__((unused)) const Array<UInt> & indexes,
__attribute__((unused)) const SynchronizationTag & tag) const override {
return 0;
}
void packData(__attribute__((unused)) CommunicationBuffer & buffer,
__attribute__((unused)) const Array<UInt> & dofs,
__attribute__((unused)) const SynchronizationTag & tag) const override{}
void unpackData(__attribute__((unused)) CommunicationBuffer & buffer,
__attribute__((unused)) const Array<UInt> & dofs,
__attribute__((unused)) const SynchronizationTag & tag) override {}
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
FEEngine & getFEEngineBoundary(const ID & name = "") override;
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// return the dimension of the system space
AKANTU_GET_MACRO(SpatialDimension, Model::spatial_dimension, UInt);
/// get the solid mechanics model
AKANTU_GET_MACRO(SolidMechanicsModel, *solid, SolidMechanicsModel &);
/// get the contact mechanics model
AKANTU_GET_MACRO(PhaseFieldModel, *phase, PhaseFieldModel &);
/* ------------------------------------------------------------------------ */
/* Dumpable interface */
/* ------------------------------------------------------------------------ */
public:
std::shared_ptr<dumpers::Field>
createNodalFieldReal(const std::string & field_name,
const std::string & group_name,
bool padding_flag) override;
std::shared_ptr<dumpers::Field>
createNodalFieldBool(const std::string & field_name,
const std::string & group_name,
bool padding_flag) override;
std::shared_ptr<dumpers::Field>
createElementalField(const std::string & field_name,
const std::string & group_name, bool padding_flag,
UInt spatial_dimension,
ElementKind kind) override;
virtual void dump(const std::string & dumper_name);
virtual void dump(const std::string & dumper_name, UInt step);
virtual void dump(const std::string & dumper_name, Real time, UInt step);
void dump() override;
virtual void dump(UInt step);
virtual void dump(Real time, UInt step);
/* ------------------------------------------------------------------------ */
/* Members */
/* ------------------------------------------------------------------------ */
private:
/// solid mechanics model
SolidMechanicsModel * solid{nullptr};
/// phasefield model
PhaseFieldModel * phase{nullptr};
Array<Real> * displacement{nullptr};
///
Array<Real> * displacement_increment{nullptr};
/// external forces array
Array<Real> * external_force{nullptr};
};
} // namespace akantu
#endif /* __AKANTU_COUPLER_SOLID_PHASEFIELD_HH__ */

Event Timeline