Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102507727
shape_lagrange_inline_impl.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Feb 21, 10:59
Size
12 KB
Mime Type
text/x-c++
Expires
Sun, Feb 23, 10:59 (2 d)
Engine
blob
Format
Raw Data
Handle
24335361
Attached To
rAKA akantu
shape_lagrange_inline_impl.cc
View Options
/**
* @file shape_lagrange_inline_impl.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Tue Feb 15 2011
* @date last modification: Fri Jun 13 2014
*
* @brief ShapeLagrange inline implementation
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
__END_AKANTU__
#include "fe_engine.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
inline
const
Array
<
Real
>
&
ShapeLagrange
<
kind
>::
getShapes
(
const
ElementType
&
el_type
,
const
GhostType
&
ghost_type
)
const
{
return
shapes
(
FEEngine
::
getInterpolationType
(
el_type
),
ghost_type
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
inline
const
Array
<
Real
>
&
ShapeLagrange
<
kind
>::
getShapesDerivatives
(
const
ElementType
&
el_type
,
const
GhostType
&
ghost_type
)
const
{
return
shapes_derivatives
(
FEEngine
::
getInterpolationType
(
el_type
),
ghost_type
);
}
/* -------------------------------------------------------------------------- */
#define INIT_SHAPE_FUNCTIONS(type) \
setControlPointsByType<type>(control_points, ghost_type); \
precomputeShapesOnControlPoints<type>(nodes, ghost_type); \
if (ElementClass<type>::getNaturalSpaceDimension() == \
mesh.getSpatialDimension() || kind != _ek_regular) \
precomputeShapeDerivativesOnControlPoints<type>(nodes, ghost_type);
template
<
ElementKind
kind
>
inline
void
ShapeLagrange
<
kind
>::
initShapeFunctions
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
control_points
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
AKANTU_BOOST_REGULAR_ELEMENT_SWITCH
(
INIT_SHAPE_FUNCTIONS
);
}
#if defined(AKANTU_STRUCTURAL_MECHANICS)
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ShapeLagrange
<
_ek_structural
>::
initShapeFunctions
(
__attribute__
((
unused
))
const
Array
<
Real
>
&
nodes
,
__attribute__
((
unused
))
const
Matrix
<
Real
>
&
control_points
,
__attribute__
((
unused
))
const
ElementType
&
type
,
__attribute__
((
unused
))
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
#endif
#undef INIT_SHAPE_FUNCTIONS
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
inline
void
ShapeLagrange
<
kind
>::
computeShapeDerivativesOnCPointsByElement
(
const
Matrix
<
Real
>
&
node_coords
,
const
Matrix
<
Real
>
&
natural_coords
,
Tensor3
<
Real
>
&
shapesd
)
{
// compute dnds
Tensor3
<
Real
>
dnds
(
node_coords
.
rows
(),
node_coords
.
cols
(),
natural_coords
.
cols
());
ElementClass
<
type
>::
computeDNDS
(
natural_coords
,
dnds
);
// compute dxds
Tensor3
<
Real
>
J
(
node_coords
.
rows
(),
natural_coords
.
rows
(),
natural_coords
.
cols
());
ElementClass
<
type
>::
computeJMat
(
dnds
,
node_coords
,
J
);
// compute shape derivatives
ElementClass
<
type
>::
computeShapeDerivatives
(
J
,
dnds
,
shapesd
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
inverseMap
(
const
Vector
<
Real
>
&
real_coords
,
UInt
elem
,
Vector
<
Real
>
&
natural_coords
,
const
GhostType
&
ghost_type
)
const
{
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
UInt
*
elem_val
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
storage
();
Matrix
<
Real
>
nodes_coord
(
spatial_dimension
,
nb_nodes_per_element
);
mesh
.
extractNodalValuesFromElement
(
mesh
.
getNodes
(),
nodes_coord
.
storage
(),
elem_val
+
elem
*
nb_nodes_per_element
,
nb_nodes_per_element
,
spatial_dimension
);
ElementClass
<
type
>::
inverseMap
(
real_coords
,
nodes_coord
,
natural_coords
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
bool
ShapeLagrange
<
kind
>::
contains
(
const
Vector
<
Real
>
&
real_coords
,
UInt
elem
,
const
GhostType
&
ghost_type
)
const
{
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
Vector
<
Real
>
natural_coords
(
spatial_dimension
);
inverseMap
<
type
>
(
real_coords
,
elem
,
natural_coords
,
ghost_type
);
return
ElementClass
<
type
>::
contains
(
natural_coords
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeShapes
(
const
Vector
<
Real
>
&
real_coords
,
UInt
elem
,
Vector
<
Real
>
&
shapes
,
const
GhostType
&
ghost_type
)
const
{
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
Vector
<
Real
>
natural_coords
(
spatial_dimension
);
inverseMap
<
type
>
(
real_coords
,
elem
,
natural_coords
,
ghost_type
);
ElementClass
<
type
>::
computeShapes
(
natural_coords
,
shapes
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
ShapeLagrange
<
kind
>::
ShapeLagrange
(
const
Mesh
&
mesh
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
ShapeFunctions
(
mesh
,
id
,
memory_id
),
shapes
(
"shapes_generic"
,
id
),
shapes_derivatives
(
"shapes_derivatives_generic"
,
id
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
precomputeShapesOnControlPoints
(
__attribute__
((
unused
))
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
Matrix
<
Real
>
&
natural_coords
=
control_points
(
type
,
ghost_type
);
UInt
nb_points
=
natural_coords
.
cols
();
UInt
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
UInt
nb_element
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
getSize
();;
Array
<
Real
>
&
shapes_tmp
=
shapes
.
alloc
(
nb_element
*
nb_points
,
size_of_shapes
,
itp_type
,
ghost_type
);
Array
<
Real
>::
matrix_iterator
shapes_it
=
shapes_tmp
.
begin_reinterpret
(
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
(),
nb_points
,
nb_element
);
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
,
++
shapes_it
)
{
Matrix
<
Real
>
&
N
=
*
shapes_it
;
ElementClass
<
type
>::
computeShapes
(
natural_coords
,
N
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
precomputeShapeDerivativesOnControlPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
// Real * coord = mesh.getNodes().storage();
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
UInt
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
Matrix
<
Real
>
&
natural_coords
=
control_points
(
type
,
ghost_type
);
UInt
nb_points
=
natural_coords
.
cols
();
UInt
nb_element
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
getSize
();
Array
<
Real
>
&
shapes_derivatives_tmp
=
shapes_derivatives
.
alloc
(
nb_element
*
nb_points
,
size_of_shapesd
,
itp_type
,
ghost_type
);
Array
<
Real
>
x_el
(
0
,
spatial_dimension
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
x_el
,
type
,
ghost_type
);
Real
*
shapesd_val
=
shapes_derivatives_tmp
.
storage
();
Array
<
Real
>::
matrix_iterator
x_it
=
x_el
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
,
++
x_it
)
{
Matrix
<
Real
>
&
X
=
*
x_it
;
Tensor3
<
Real
>
B
(
shapesd_val
,
spatial_dimension
,
nb_nodes_per_element
,
nb_points
);
computeShapeDerivativesOnCPointsByElement
<
type
>
(
X
,
natural_coords
,
B
);
shapesd_val
+=
size_of_shapesd
*
nb_points
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
interpolateOnControlPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
UInt
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
shapes
.
exists
(
itp_type
,
ghost_type
),
"No shapes for the type "
<<
shapes
.
printType
(
itp_type
,
ghost_type
));
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
in_u
,
u_el
,
type
,
ghost_type
,
filter_elements
);
this
->
interpolateElementalFieldOnControlPoints
<
type
>
(
u_el
,
out_uq
,
ghost_type
,
shapes
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
gradientOnControlPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_nablauq
,
UInt
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
shapes_derivatives
.
exists
(
itp_type
,
ghost_type
),
"No shapes derivatives for the type "
<<
shapes_derivatives
.
printType
(
itp_type
,
ghost_type
));
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
in_u
,
u_el
,
type
,
ghost_type
,
filter_elements
);
this
->
gradientElementalFieldOnControlPoints
<
type
>
(
u_el
,
out_nablauq
,
ghost_type
,
shapes_derivatives
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
fieldTimesShapes
(
const
Array
<
Real
>
&
field
,
Array
<
Real
>
&
field_times_shapes
,
GhostType
ghost_type
)
const
{
field_times_shapes
.
resize
(
field
.
getSize
());
UInt
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
UInt
nb_degree_of_freedom
=
field
.
getNbComponent
();
const
Array
<
Real
>
&
shape
=
shapes
(
itp_type
,
ghost_type
);
Array
<
Real
>::
const_matrix_iterator
field_it
=
field
.
begin
(
nb_degree_of_freedom
,
1
);
Array
<
Real
>::
const_matrix_iterator
shapes_it
=
shape
.
begin
(
1
,
size_of_shapes
);
Array
<
Real
>::
matrix_iterator
it
=
field_times_shapes
.
begin
(
nb_degree_of_freedom
,
size_of_shapes
);
Array
<
Real
>::
matrix_iterator
end
=
field_times_shapes
.
end
(
nb_degree_of_freedom
,
size_of_shapes
);
for
(;
it
!=
end
;
++
it
,
++
field_it
,
++
shapes_it
)
{
it
->
mul
<
false
,
false
>
(
*
field_it
,
*
shapes_it
);
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
void
ShapeLagrange
<
kind
>::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
std
::
string
space
;
for
(
Int
i
=
0
;
i
<
indent
;
i
++
,
space
+=
AKANTU_INDENT
);
stream
<<
space
<<
"Shapes Lagrange ["
<<
std
::
endl
;
ShapeFunctions
::
printself
(
stream
,
indent
+
1
);
shapes
.
printself
(
stream
,
indent
+
1
);
shapes_derivatives
.
printself
(
stream
,
indent
+
1
);
stream
<<
space
<<
"]"
<<
std
::
endl
;
}
Event Timeline
Log In to Comment