Page MenuHomec4science

test_detection_implicit_2d.cc
No OneTemporary

File Metadata

Created
Wed, Aug 28, 19:25

test_detection_implicit_2d.cc

/**
* @file test_contact_detection.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Wed Dec 18 2018
* @date last modification: Wed Dec 18 2018
*
* @brief Test for extrinsic detection 2D
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "contact_detector.hh"
#include "contact_element.hh"
#include "aka_grid_dynamic.hh"
#include <set>
#include <tuple>
/* -------------------------------------------------------------------------- */
using namespace akantu;
const Real radius = 0.1;
const UInt spatial_dimension = 2;
auto analyticalCurvedSlave(Mesh & mesh, const UInt & node) {
auto & positions = mesh.getNodes();
Real analytical_gap = positions(node, 1);
Vector<Real> normal(spatial_dimension);
normal[0] = 0.0;
normal[1] = 1.0;
Vector<Real> tangent(spatial_dimension);
tangent[0] = -1.0;
tangent[1] = 0.0;
return std::make_tuple(analytical_gap, normal, tangent);
}
auto analyticalCurvedMaster(Mesh & mesh, const UInt & node) {
auto & positions = mesh.getNodes();
Vector<Real> slave_point(spatial_dimension);
slave_point[0] = positions(node, 0);
slave_point[1] = positions(node, 1);
Real slope = -radius/slave_point[0];
Real sign = slave_point[0] < 0 ? -1.0 : 1.0;
Vector<Real> master_point(spatial_dimension);
master_point[0] = sign* radius/std::sqrt(1 + slope * slope);
master_point[1] = slope * master_point[0] + radius;
auto distance = slave_point - master_point;
Real analytical_gap = Math::norm(spatial_dimension, distance.storage());
auto normal = distance.normalize();
Vector<Real> normal_3d(spatial_dimension + 1);
normal_3d[0] = normal[0];
normal_3d[1] = normal[1];
normal_3d[2] = 0.0;
Vector<Real> outward_3d(spatial_dimension + 1);
outward_3d[0] = 0.0;
outward_3d[1] = 0.0;
outward_3d[2] = 1.0;
auto tangent_3d = outward_3d.crossProduct(normal_3d);
Vector<Real> tangent(spatial_dimension);
tangent[0] = tangent_3d[0];
tangent[1] = tangent_3d[1];
return std::make_tuple(analytical_gap, normal, tangent);
}
auto checkCurvedSlave(int argc, char *argv[]) {
initialize("options.dat", argc, argv);
Mesh mesh(spatial_dimension);
mesh.read("implicit_2d.msh");
std::map<UInt, ContactElement> contact_map;
ContactDetector detector(mesh);
detector.setSurfaceId<Surface::slave>("curved");
detector.setSurfaceId<Surface::master>("flat");
SpatialGrid<UInt> master_grid(spatial_dimension);
SpatialGrid<UInt> slave_grid(spatial_dimension);
detector.globalSearch(slave_grid, master_grid);
detector.localSearch(slave_grid, master_grid);
detector.constructContactMap(contact_map);
for (auto & entry : contact_map) {
const auto & slave = entry.first;
const auto & element = entry.second;
const auto & gap = element.gap;
const auto & normal = element.normal;
const auto & tangent = element.tangents;
Real analytical_gap;
Vector<Real> analytical_normal, analytical_tangent;
std::tie(analytical_gap, analytical_normal, analytical_tangent)
= analyticalCurvedSlave(mesh, slave);
Real tolerance = 1e-8;
auto gap_error = std::abs(gap - analytical_gap);
if (gap_error > tolerance) {
std::cerr << "gap error: " << gap_error << " > " << tolerance
<< std::endl;
std::cerr << "gap: " << gap << std::endl
<< "analytical gap: " << analytical_gap << std::endl;
return EXIT_FAILURE;
}
auto normal_error = normal - analytical_normal;
if (std::abs(normal_error[0]) > tolerance or std::abs(normal_error[1]) > tolerance) {
std::cerr << "normal error: " << normal_error << " > " << tolerance
<< std::endl;
std::cerr << "normal: " << normal << std::endl
<< "analytical normal: " << analytical_normal << std::endl;
return EXIT_FAILURE;
}
auto tangent_trans = tangent.transpose();
auto tang = Vector<Real>(tangent_trans(0));
auto tangent_error = tang - analytical_tangent;
if (std::abs(tangent_error[0]) > tolerance or std::abs(tangent_error[1]) > tolerance) {
std::cerr << "tangent error: " << tangent_error << " > " << tolerance
<< std::endl;
std::cerr << "tangent: " << tang << std::endl
<< "analytical tangent: " << analytical_tangent << std::endl;
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
auto checkCurvedMaster(int argc, char *argv[]) {
initialize("options.dat", argc, argv);
Mesh mesh(spatial_dimension);
mesh.read("implicit_2d.msh");
std::map<UInt, ContactElement> contact_map;
ContactDetector detector(mesh);
detector.setSurfaceId<Surface::slave>("flat");
detector.setSurfaceId<Surface::master>("curved");
SpatialGrid<UInt> master_grid(spatial_dimension);
SpatialGrid<UInt> slave_grid(spatial_dimension);
detector.globalSearch(slave_grid, master_grid);
detector.localSearch(slave_grid, master_grid);
detector.constructContactMap(contact_map);
for (auto & entry : contact_map) {
const auto & slave = entry.first;
const auto & element = entry.second;
const auto & gap = element.gap;
const auto & normal = element.normal;
const auto & tangent = element.tangents;
Real analytical_gap;
Vector<Real> analytical_normal, analytical_tangent;
std::tie(analytical_gap, analytical_normal, analytical_tangent)
= analyticalCurvedMaster(mesh, slave);
Real tolerance = 1e-2;
auto gap_error = std::abs(gap - analytical_gap);
if (gap_error > tolerance) {
std::cerr << "slave node: " << slave << std::endl;
std::cerr << "gap error: " << gap_error << " > " << tolerance
<< std::endl;
std::cerr << "gap: " << gap << std::endl
<< "analytical gap: " << analytical_gap << std::endl;
return EXIT_FAILURE;
}
auto normal_error = normal - analytical_normal;
if (std::abs(normal_error[0]) > tolerance or std::abs(normal_error[1]) > tolerance) {
std::cerr << "normal error: " << normal_error << " > " << tolerance
<< std::endl;
std::cerr << "normal: " << normal << std::endl
<< "analytical normal: " << analytical_normal << std::endl;
return EXIT_FAILURE;
}
auto tangent_trans = tangent.transpose();
auto tang = Vector<Real>(tangent_trans(0));
auto tangent_error = tang - analytical_tangent;
if (std::abs(tangent_error[0]) > tolerance or std::abs(tangent_error[1]) > tolerance) {
std::cerr << "tangent error: " << tangent_error << " > " << tolerance
<< std::endl;
std::cerr << "tangent: " << tang << std::endl
<< "analytical tangent: " << analytical_tangent << std::endl;
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
int main(int argc, char *argv[])
{
//checkCurvedSlave(argc, argv);
checkCurvedMaster(argc, argv);
return EXIT_SUCCESS;
}

Event Timeline