Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90393026
aka_geometry.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 06:43
Size
10 KB
Mime Type
text/x-c++
Expires
Sun, Nov 3, 06:43 (2 d)
Engine
blob
Format
Raw Data
Handle
20791906
Attached To
rAKA akantu
aka_geometry.hh
View Options
/**
* @file aka_geometry.hh
*
* @author Alejandro M. Aragón <alejandro.aragon@epfl.ch>
*
* @date creation: Fri Jan 04 2013
* @date last modification: Tue Sep 02 2014
*
* @brief geometric operations
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_GEOMETRY_HH__
#define __AKANTU_GEOMETRY_HH__
#include <iostream>
#include <tuple>
#include "aka_point.hh"
#include "aka_plane.hh"
#include "aka_math.hh"
__BEGIN_AKANTU__
// predicates
// combined tolerance test, from Christer Ericson
template
<
typename
T
>
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
,
bool
>::
type
equal
(
T
x
,
T
y
,
T
tol
=
2
*
std
::
numeric_limits
<
T
>::
epsilon
())
{
T
absTol
=
tol
;
T
relTol
=
absTol
;
// here both tolerances are equal, but the code is written
// like this so that tolerance values can be assigned indepently
// in the future
return
std
::
abs
(
x
-
y
)
<=
std
::
max
(
absTol
,
relTol
*
std
::
max
(
std
::
abs
(
x
),
std
::
abs
(
y
)));
}
// combined tolerance test, from Christer Ericson
template
<
typename
T
>
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
,
bool
>::
type
equal
(
T
x
,
T
y
)
{
return
x
==
y
;
}
Real
left_turn
(
const
Point
<
2
>&
p
,
const
Point
<
2
>&
q
,
const
Point
<
2
>&
r
);
// closest point computations
//! Computes the closest point laying on a segment to a point
/*! Given segment \c ab and point \c c, computes closest point \c d on ab.
* Also returns \c t for the position of the point: a + t*(b - a)
*/
template
<
int
d
,
typename
T
>
Point
<
d
,
T
>
closest_point_to_segment
(
const
Point
<
d
,
T
>&
c
,
const
Point
<
d
,
T
>&
a
,
const
Point
<
d
,
T
>&
b
)
{
Point
<
d
,
T
>
ab
=
b
-
a
;
// project c onto ab, computing parameterized position d(t) = a + t*(b – a)
T
t
=
(
c
-
a
)
*
ab
/
sqrt
(
ab
*
ab
);
// if outside segment, clamp t (and therefore d) to the closest endpoint
if
(
t
<
0.
)
t
=
0.
;
else
if
(
t
>
1.
)
t
=
1.
;
// compute projected position from the clamped t
return
a
+
t
*
ab
;
}
//! Predicate that checks if a point has a projection on a line segment
/*! Given segment \c ab and point \c c, checks if the point has a projection in the segment.
*/
template
<
int
d
,
typename
T
>
bool
has_projection
(
const
Point
<
d
,
T
>&
c
,
const
Point
<
d
,
T
>&
a
,
const
Point
<
d
,
T
>&
b
)
{
Point
<
d
,
T
>
ab
=
b
-
a
;
// project c onto ab, computing parameterized position d(t) = a + t*(b – a)
T
t
=
(
c
-
a
)
*
ab
/
(
ab
*
ab
);
return
t
>
0.
&&
t
<
1.
;
}
//! Tests if a point has a projection to a triangle
/*! This function uses the concept of Voronoi regions to determine
* if a point has a projection within a triangle defined by points
* \c a, \c b, and \c c.
*/
template
<
typename
T
>
bool
point_has_projection_to_triangle
(
const
Point
<
3
,
T
>&
p
,
const
Point
<
3
,
T
>&
a
,
const
Point
<
3
,
T
>&
b
,
const
Point
<
3
,
T
>&
c
)
{
typedef
Point
<
3
,
T
>
point_type
;
// obtain plane of the triangle
Plane
pi
(
a
,
b
,
c
);
// get point in the plane closest to p
point_type
q
=
closest_point_to_plane
(
p
,
pi
);
// return if point is within the triangle
if
(
is_point_in_triangle
(
q
,
a
,
b
,
c
))
return
true
;
return
false
;
}
//! Tests if point P lies inside a triangle
/*! The triangle is defined by points \c a, \c b and \c c.
*/
template
<
typename
T
>
bool
is_point_in_triangle
(
const
Point
<
3
,
T
>&
p
,
const
Point
<
3
,
T
>&
a
,
const
Point
<
3
,
T
>&
b
,
const
Point
<
3
,
T
>&
c
)
{
typedef
Point
<
3
,
T
>
point_type
;
point_type
v0
=
b
-
a
,
v1
=
c
-
a
,
v2
=
p
-
a
;
Real
d00
=
v0
*
v0
;
Real
d01
=
v0
*
v1
;
Real
d11
=
v1
*
v1
;
Real
d20
=
v2
*
v0
;
Real
d21
=
v2
*
v1
;
Real
denom
=
d00
*
d11
-
d01
*
d01
;
// compute parametric coordinates
Real
v
=
(
d11
*
d20
-
d01
*
d21
)
/
denom
;
Real
w
=
(
d00
*
d21
-
d01
*
d20
)
/
denom
;
return
v
>=
0.
&&
w
>=
0.
&&
v
+
w
<=
1.
;
}
//! Compute the closest point to a triangle
/*! This function uses the concept of Voronoi regions to determine
* the closest point \c p to a triangle defined by points \c a, \c b
* \c c.
*/
template
<
typename
T
>
Point
<
3
,
T
>
closest_point_to_triangle
(
const
Point
<
3
,
T
>&
p
,
const
Point
<
3
,
T
>&
a
,
const
Point
<
3
,
T
>&
b
,
const
Point
<
3
,
T
>&
c
)
{
typedef
Point
<
3
,
T
>
point_type
;
// check if P in vertex region outside A
point_type
ab
=
b
-
a
;
point_type
ac
=
c
-
a
;
point_type
ap
=
p
-
a
;
// compute scalar products
T
d1
=
ab
*
ap
;
T
d2
=
ac
*
ap
;
if
(
d1
<=
0.
&&
d2
<=
0.
)
return
a
;
// barycentric coordinates (1,0,0)
// check if P in vertex region outside B
point_type
bp
=
p
-
b
;
T
d3
=
ab
*
bp
;
T
d4
=
ac
*
bp
;
if
(
d3
>=
0.0f
&&
d4
<=
d3
)
return
b
;
// barycentric coordinates (0,1,0)
// check if P in edge region of AB, if so return projection of P onto AB
T
vc
=
d1
*
d4
-
d3
*
d2
;
if
(
vc
<=
0.
&&
d1
>=
0.
&&
d3
<=
0.
)
{
T
v
=
d1
/
(
d1
-
d3
);
return
a
+
v
*
ab
;
// barycentric coordinates (1-v,v,0)
}
// check if P in vertex region outside C
point_type
cp
=
p
-
c
;
T
d5
=
ab
*
cp
;
T
d6
=
ac
*
cp
;
if
(
d6
>=
0.0f
&&
d5
<=
d6
)
return
c
;
// barycentric coordinates (0,0,1)
// check if P in edge region of AC, if so return projection of P onto AC
T
vb
=
d5
*
d2
-
d1
*
d6
;
if
(
vb
<=
0.0f
&&
d2
>=
0.0f
&&
d6
<=
0.0f
)
{
T
w
=
d2
/
(
d2
-
d6
);
return
a
+
w
*
ac
;
// barycentric coordinates (1-w,0,w)
}
// Check if P in edge region of BC, if so return projection of P onto BC
T
va
=
d3
*
d6
-
d5
*
d4
;
if
(
va
<=
0.0f
&&
(
d4
-
d3
)
>=
0.0f
&&
(
d5
-
d6
)
>=
0.0f
)
{
T
w
=
(
d4
-
d3
)
/
((
d4
-
d3
)
+
(
d5
-
d6
));
return
b
+
w
*
(
c
-
b
);
// barycentric coordinates (0,1-w,w)
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
T
denom
=
1.0f
/
(
va
+
vb
+
vc
);
T
v
=
vb
*
denom
;
T
w
=
vc
*
denom
;
return
a
+
ab
*
v
+
ac
*
w
;
// = u*a + v*b + w*c, u = va*denom = 1.0f - v - w
}
template
<
typename
T
>
Point
<
3
,
T
>
closest_point_to_plane
(
const
Point
<
3
,
T
>&
q
,
const
Plane
&
p
)
{
typedef
Point
<
3
,
T
>
point_type
;
const
point_type
&
n
=
p
.
normal
();
T
t
=
(
n
*
q
-
p
.
distance
())
/
(
n
*
n
);
return
q
-
t
*
n
;
}
//! Compute the closest point to a triangle
/*! Obtains the plane of the triangle and checks if the point lies inside the
* triangle. If not, it computes the closest point to each of the triangle
* edges.
*/
template
<
typename
T
>
Point
<
3
,
T
>
naive_closest_point_to_triangle
(
const
Point
<
3
,
T
>&
p
,
const
Point
<
3
,
T
>&
a
,
const
Point
<
3
,
T
>&
b
,
const
Point
<
3
,
T
>&
c
)
{
typedef
Point
<
3
,
T
>
point_type
;
// obtain plane of the triangle
Plane
pi
(
a
,
b
,
c
);
// get point in the plane closest to p
point_type
q
=
closest_point_to_plane
(
p
,
pi
);
// return if point is within the triangle
if
(
is_point_in_triangle
(
q
,
a
,
b
,
c
))
return
q
;
// else get the closest point taking into account all edges
// first edge
q
=
closest_point_to_segment
(
p
,
a
,
b
);
T
d
=
(
q
-
p
).
sq_norm
();
// second edge
point_type
r
=
closest_point_to_segment
(
p
,
b
,
c
);
T
d2
=
(
r
-
p
).
sq_norm
();
if
(
d2
<
d
)
{
q
=
r
;
d
=
d2
;
}
// third edge
r
=
closest_point_to_segment
(
p
,
c
,
a
);
d2
=
(
r
-
p
).
sq_norm
();
if
(
d2
<
d
)
q
=
r
;
// return closest point
return
q
;
}
// intersect point p with velocity v with plane
// the function returns collision time and point of contact
// this function does not consider acceleration
template
<
typename
T
>
std
::
tuple
<
Real
,
Point
<
3
,
T
>
>
moving_point_against_plane
(
const
Point
<
3
,
T
>&
p
,
const
Point
<
3
,
T
>&
v
,
Plane
&
pi
)
{
typedef
Point
<
3
,
T
>
point_type
;
// compute distance of point to plane
Real
dist
=
pi
.
normal
()
*
p
-
pi
.
distance
();
// if point already in the plane
if
(
std
::
abs
(
dist
)
<=
1e-10
)
return
std
::
make_tuple
(
0.
,
p
);
else
{
Real
denom
=
pi
.
normal
()
*
v
;
// no intersection as poin moving parallel to or away from plane
if
(
denom
*
dist
>=
0.
)
return
std
::
make_tuple
(
inf
,
point_type
());
// point moving towards the plane
else
{
// point is moving towards the plane
Real
t
=
-
dist
/
denom
;
return
std
::
make_tuple
(
t
,
p
+
t
*
v
);
}
}
}
template
<
int
dim
,
typename
T
>
std
::
tuple
<
Real
,
Point
<
dim
,
T
>
>
moving_point_against_point
(
const
Point
<
dim
,
T
>&
s1
,
const
Point
<
dim
,
T
>&
s2
,
/* point centers */
const
Point
<
dim
,
T
>&
v1
,
const
Point
<
dim
,
T
>&
v2
)
/* point velocities */
{
typedef
Point
<
dim
,
T
>
point_type
;
typedef
typename
Point
<
dim
,
T
>::
value_type
value_type
;
// vector between points
point_type
s
=
s2
-
s1
;
// relative motion of s1 with respect to stationary s0
point_type
v
=
v2
-
v1
;
value_type
c
=
s
*
s
;
// if points within tolerance
if
(
equal
(
s
.
sq_norm
(),
value_type
()))
return
std
::
make_tuple
(
value_type
(),
s1
);
value_type
epsilon
=
2
*
std
::
numeric_limits
<
T
>::
epsilon
();;
value_type
a
=
v
*
v
;
// if points not moving relative to each other
if
(
a
<
epsilon
)
return
std
::
make_tuple
(
inf
,
point_type
());
value_type
b
=
v
*
s
;
// if points not moving towards each other
if
(
b
>=
0.
)
return
std
::
make_tuple
(
inf
,
point_type
());
value_type
d
=
b
*
b
-
a
*
c
;
// if no real-valued root (d < 0), points do not intersect
if
(
d
>=
0.
)
{
value_type
ts
=
(
-
b
-
sqrt
(
d
))
/
a
;
point_type
q
=
s1
+
v1
*
ts
;
return
std
::
make_tuple
(
ts
,
q
);
}
return
std
::
make_tuple
(
inf
,
point_type
());
}
__END_AKANTU__
#endif
/* __AKANTU_GEOMETRY_HH__ */
Event Timeline
Log In to Comment