Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91931904
coupler_solid_phasefield.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 15, 20:51
Size
20 KB
Mime Type
text/x-c
Expires
Sun, Nov 17, 20:51 (2 d)
Engine
blob
Format
Raw Data
Handle
22349603
Attached To
rAKA akantu
coupler_solid_phasefield.cc
View Options
/**
* @file coupler_solid_phasefield.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Jun 24 2019
* @date last modification: Fri Apr 02 2021
*
* @brief class for coupling of solid mechancis and phase model
*
*
* @section LICENSE
*
* Copyright (©) 2018-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "coupler_solid_phasefield.hh"
#include "dumpable_inline_impl.hh"
#include "element_synchronizer.hh"
#include "integrator_gauss.hh"
#include "shape_lagrange.hh"
/* -------------------------------------------------------------------------- */
#include "dumper_iohelper_paraview.hh"
/* -------------------------------------------------------------------------- */
namespace
akantu
{
CouplerSolidPhaseField
::
CouplerSolidPhaseField
(
Mesh
&
mesh
,
UInt
dim
,
const
ID
&
id
,
const
ModelType
model_type
)
:
Model
(
mesh
,
model_type
,
dim
,
id
)
{
AKANTU_DEBUG_IN
();
this
->
registerFEEngineObject
<
MyFEEngineType
>
(
"CouplerSolidPhaseField"
,
mesh
,
Model
::
spatial_dimension
);
this
->
mesh
.
registerDumper
<
DumperParaview
>
(
"coupler_solid_phasefield"
,
id
,
true
);
this
->
mesh
.
addDumpMeshToDumper
(
"coupler_solid_phasefield"
,
mesh
,
Model
::
spatial_dimension
,
_not_ghost
,
_ek_regular
);
this
->
registerDataAccessor
(
*
this
);
solid
=
new
SolidMechanicsModel
(
mesh
,
Model
::
spatial_dimension
,
"solid_mechanics_model"
);
phase
=
new
PhaseFieldModel
(
mesh
,
Model
::
spatial_dimension
,
"phase_field_model"
);
if
(
this
->
mesh
.
isDistributed
())
{
auto
&
synchronizer
=
this
->
mesh
.
getElementSynchronizer
();
this
->
registerSynchronizer
(
synchronizer
,
SynchronizationTag
::
_csp_damage
);
this
->
registerSynchronizer
(
synchronizer
,
SynchronizationTag
::
_csp_strain
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
CouplerSolidPhaseField
::~
CouplerSolidPhaseField
()
=
default
;
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
initFullImpl
(
const
ModelOptions
&
options
)
{
Model
::
initFullImpl
(
options
);
this
->
initBC
(
*
this
,
*
displacement
,
*
displacement_increment
,
*
external_force
);
solid
->
initFull
(
_analysis_method
=
this
->
method
);
phase
->
initFull
(
_analysis_method
=
this
->
method
);
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
initModel
()
{
getFEEngine
().
initShapeFunctions
(
_not_ghost
);
getFEEngine
().
initShapeFunctions
(
_ghost
);
}
/* -------------------------------------------------------------------------- */
FEEngine
&
CouplerSolidPhaseField
::
getFEEngineBoundary
(
const
ID
&
name
)
{
return
dynamic_cast
<
FEEngine
&>
(
getFEEngineClassBoundary
<
MyFEEngineType
>
(
name
));
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
initSolver
(
TimeStepSolverType
time_step_solver_type
,
NonLinearSolverType
non_linear_solver_type
)
{
auto
&
solid_model_solver
=
aka
::
as_type
<
ModelSolver
>
(
*
solid
);
solid_model_solver
.
initSolver
(
time_step_solver_type
,
non_linear_solver_type
);
auto
&
phase_model_solver
=
aka
::
as_type
<
ModelSolver
>
(
*
phase
);
phase_model_solver
.
initSolver
(
time_step_solver_type
,
non_linear_solver_type
);
}
/* -------------------------------------------------------------------------- */
std
::
tuple
<
ID
,
TimeStepSolverType
>
CouplerSolidPhaseField
::
getDefaultSolverID
(
const
AnalysisMethod
&
method
)
{
switch
(
method
)
{
case
_explicit_lumped_mass:
{
return
std
::
make_tuple
(
"explicit_lumped"
,
TimeStepSolverType
::
_dynamic_lumped
);
}
case
_explicit_consistent_mass:
{
return
std
::
make_tuple
(
"explicit"
,
TimeStepSolverType
::
_dynamic
);
}
case
_static:
{
return
std
::
make_tuple
(
"static"
,
TimeStepSolverType
::
_static
);
}
case
_implicit_dynamic:
{
return
std
::
make_tuple
(
"implicit"
,
TimeStepSolverType
::
_dynamic
);
}
default
:
return
std
::
make_tuple
(
"unknown"
,
TimeStepSolverType
::
_not_defined
);
}
}
/* -------------------------------------------------------------------------- */
TimeStepSolverType
CouplerSolidPhaseField
::
getDefaultSolverType
()
const
{
return
TimeStepSolverType
::
_dynamic_lumped
;
}
/* -------------------------------------------------------------------------- */
ModelSolverOptions
CouplerSolidPhaseField
::
getDefaultSolverOptions
(
const
TimeStepSolverType
&
type
)
const
{
ModelSolverOptions
options
;
switch
(
type
)
{
case
TimeStepSolverType
::
_dynamic_lumped:
{
options
.
non_linear_solver_type
=
NonLinearSolverType
::
_lumped
;
options
.
integration_scheme_type
[
"displacement"
]
=
IntegrationSchemeType
::
_central_difference
;
options
.
solution_type
[
"displacement"
]
=
IntegrationScheme
::
_acceleration
;
break
;
}
case
TimeStepSolverType
::
_dynamic:
{
options
.
non_linear_solver_type
=
NonLinearSolverType
::
_lumped
;
options
.
integration_scheme_type
[
"displacement"
]
=
IntegrationSchemeType
::
_central_difference
;
options
.
solution_type
[
"displacement"
]
=
IntegrationScheme
::
_acceleration
;
break
;
}
case
TimeStepSolverType
::
_static:
{
options
.
non_linear_solver_type
=
NonLinearSolverType
::
_linear
;
options
.
integration_scheme_type
[
"displacement"
]
=
IntegrationSchemeType
::
_pseudo_time
;
options
.
solution_type
[
"displacement"
]
=
IntegrationScheme
::
_not_defined
;
break
;
}
default
:
AKANTU_EXCEPTION
(
type
<<
" is not a valid time step solver type"
);
break
;
}
return
options
;
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleResidual
()
{
// computes the internal forces
this
->
assembleInternalForces
();
auto
&
solid_internal_force
=
solid
->
getInternalForce
();
auto
&
solid_external_force
=
solid
->
getExternalForce
();
auto
&
phasefield_internal_force
=
phase
->
getInternalForce
();
auto
&
phasefield_external_force
=
phase
->
getExternalForce
();
/* ------------------------------------------------------------------------ */
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
solid_external_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
solid_internal_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"damage"
,
phasefield_external_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"damage"
,
phasefield_internal_force
,
1
);
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleResidual
(
const
ID
&
residual_part
)
{
AKANTU_DEBUG_IN
();
auto
&
solid_internal_force
=
solid
->
getInternalForce
();
auto
&
solid_external_force
=
solid
->
getExternalForce
();
auto
&
phasefield_internal_force
=
phase
->
getInternalForce
();
auto
&
phasefield_external_force
=
phase
->
getExternalForce
();
if
(
"external"
==
residual_part
)
{
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
solid_external_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
solid_internal_force
,
1
);
AKANTU_DEBUG_OUT
();
return
;
}
if
(
"internal"
==
residual_part
)
{
this
->
getDOFManager
().
assembleToResidual
(
"damage"
,
phasefield_external_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"damage"
,
phasefield_internal_force
,
1
);
AKANTU_DEBUG_OUT
();
return
;
}
AKANTU_CUSTOM_EXCEPTION
(
debug
::
SolverCallbackResidualPartUnknown
(
residual_part
));
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
predictor
()
{
auto
&
solid_model_solver
=
aka
::
as_type
<
ModelSolver
>
(
*
solid
);
solid_model_solver
.
predictor
();
auto
&
phase_model_solver
=
aka
::
as_type
<
ModelSolver
>
(
*
phase
);
phase_model_solver
.
predictor
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
corrector
()
{
auto
&
solid_model_solver
=
aka
::
as_type
<
ModelSolver
>
(
*
solid
);
solid_model_solver
.
corrector
();
auto
&
phase_model_solver
=
aka
::
as_type
<
ModelSolver
>
(
*
phase
);
phase_model_solver
.
corrector
();
}
/* -------------------------------------------------------------------------- */
MatrixType
CouplerSolidPhaseField
::
getMatrixType
(
const
ID
&
matrix_id
)
const
{
if
(
matrix_id
==
"K"
)
{
return
_symmetric
;
}
if
(
matrix_id
==
"M"
)
{
return
_symmetric
;
}
return
_mt_not_defined
;
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleMatrix
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"K"
)
{
this
->
assembleStiffnessMatrix
();
}
else
if
(
matrix_id
==
"M"
)
{
solid
->
assembleMass
();
}
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleLumpedMatrix
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"M"
)
{
solid
->
assembleMassLumped
();
}
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
beforeSolveStep
()
{
auto
&
solid_solver_callback
=
aka
::
as_type
<
SolverCallback
>
(
*
solid
);
solid_solver_callback
.
beforeSolveStep
();
auto
&
phase_solver_callback
=
aka
::
as_type
<
SolverCallback
>
(
*
phase
);
phase_solver_callback
.
beforeSolveStep
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
afterSolveStep
(
bool
converged
)
{
auto
&
solid_solver_callback
=
aka
::
as_type
<
SolverCallback
>
(
*
solid
);
solid_solver_callback
.
afterSolveStep
(
converged
);
auto
&
phase_solver_callback
=
aka
::
as_type
<
SolverCallback
>
(
*
phase
);
phase_solver_callback
.
afterSolveStep
(
converged
);
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleInternalForces
()
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_INFO
(
"Assemble the internal forces"
);
solid
->
assembleInternalForces
();
phase
->
assembleInternalForces
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleStiffnessMatrix
()
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_INFO
(
"Assemble the new stiffness matrix"
);
solid
->
assembleStiffnessMatrix
();
phase
->
assembleStiffnessMatrix
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleMassLumped
()
{
solid
->
assembleMassLumped
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleMass
()
{
solid
->
assembleMass
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleMassLumped
(
GhostType
ghost_type
)
{
solid
->
assembleMassLumped
(
ghost_type
);
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
assembleMass
(
GhostType
ghost_type
)
{
solid
->
assembleMass
(
ghost_type
);
}
/* ------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
computeDamageOnQuadPoints
(
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
auto
&
fem
=
phase
->
getFEEngine
();
auto
&
mesh
=
phase
->
getMesh
();
auto
nb_materials
=
solid
->
getNbMaterials
();
auto
nb_phasefields
=
phase
->
getNbPhaseFields
();
AKANTU_DEBUG_ASSERT
(
nb_phasefields
==
nb_materials
,
"The number of phasefields and materials should be equal"
);
for
(
auto
index
:
arange
(
nb_materials
))
{
auto
&
material
=
solid
->
getMaterial
(
index
);
for
(
auto
index2
:
arange
(
nb_phasefields
))
{
auto
&
phasefield
=
phase
->
getPhaseField
(
index2
);
if
(
phasefield
.
getName
()
==
material
.
getName
())
{
switch
(
spatial_dimension
)
{
case
1
:
{
auto
&
mat
=
static_cast
<
MaterialPhaseField
<
1
>
&>
(
material
);
auto
&
damage
=
mat
.
getDamage
();
for
(
const
auto
&
type
:
mesh
.
elementTypes
(
Model
::
spatial_dimension
,
ghost_type
))
{
auto
&
damage_on_qpoints_vect
=
damage
(
type
,
ghost_type
);
fem
.
interpolateOnIntegrationPoints
(
phase
->
getDamage
(),
damage_on_qpoints_vect
,
1
,
type
,
ghost_type
);
}
break
;
}
case
2
:
{
auto
&
mat
=
static_cast
<
MaterialPhaseField
<
2
>
&>
(
material
);
auto
&
damage
=
mat
.
getDamage
();
for
(
const
auto
&
type
:
mesh
.
elementTypes
(
Model
::
spatial_dimension
,
ghost_type
))
{
auto
&
damage_on_qpoints_vect
=
damage
(
type
,
ghost_type
);
fem
.
interpolateOnIntegrationPoints
(
phase
->
getDamage
(),
damage_on_qpoints_vect
,
1
,
type
,
ghost_type
);
}
break
;
}
default
:
auto
&
mat
=
static_cast
<
MaterialPhaseField
<
3
>
&>
(
material
);
auto
&
damage
=
mat
.
getDamage
();
for
(
const
auto
&
type
:
mesh
.
elementTypes
(
Model
::
spatial_dimension
,
ghost_type
))
{
auto
&
damage_on_qpoints_vect
=
damage
(
type
,
ghost_type
);
fem
.
interpolateOnIntegrationPoints
(
phase
->
getDamage
(),
damage_on_qpoints_vect
,
1
,
type
,
ghost_type
);
}
break
;
}
}
}
}
AKANTU_DEBUG_OUT
();
}
/* ------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
computeStrainOnQuadPoints
(
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
auto
&
mesh
=
solid
->
getMesh
();
auto
nb_materials
=
solid
->
getNbMaterials
();
auto
nb_phasefields
=
phase
->
getNbPhaseFields
();
AKANTU_DEBUG_ASSERT
(
nb_phasefields
==
nb_materials
,
"The number of phasefields and materials should be equal"
);
for
(
auto
index
:
arange
(
nb_materials
))
{
auto
&
material
=
solid
->
getMaterial
(
index
);
for
(
auto
index2
:
arange
(
nb_phasefields
))
{
auto
&
phasefield
=
phase
->
getPhaseField
(
index2
);
if
(
phasefield
.
getName
()
==
material
.
getName
())
{
auto
&
strain_on_qpoints
=
phasefield
.
getStrain
();
const
auto
&
gradu_on_qpoints
=
material
.
getGradU
();
for
(
const
auto
&
type
:
mesh
.
elementTypes
(
spatial_dimension
,
ghost_type
))
{
auto
&
strain_on_qpoints_vect
=
strain_on_qpoints
(
type
,
ghost_type
);
const
auto
&
gradu_on_qpoints_vect
=
gradu_on_qpoints
(
type
,
ghost_type
);
for
(
auto
&&
values
:
zip
(
make_view
(
strain_on_qpoints_vect
,
spatial_dimension
,
spatial_dimension
),
make_view
(
gradu_on_qpoints_vect
,
spatial_dimension
,
spatial_dimension
)))
{
auto
&
strain
=
std
::
get
<
0
>
(
values
);
const
auto
&
grad_u
=
std
::
get
<
1
>
(
values
);
gradUToEpsilon
(
grad_u
,
strain
);
}
}
break
;
}
}
}
AKANTU_DEBUG_OUT
();
}
/* ------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
solve
(
const
ID
&
solid_solver_id
,
const
ID
&
phase_solver_id
)
{
solid
->
solveStep
(
solid_solver_id
);
this
->
computeStrainOnQuadPoints
(
_not_ghost
);
phase
->
solveStep
(
phase_solver_id
);
this
->
computeDamageOnQuadPoints
(
_not_ghost
);
solid
->
assembleInternalForces
();
}
/* ------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
gradUToEpsilon
(
const
Matrix
<
Real
>
&
grad_u
,
Matrix
<
Real
>
&
epsilon
)
{
for
(
UInt
i
=
0
;
i
<
Model
::
spatial_dimension
;
++
i
)
{
for
(
UInt
j
=
0
;
j
<
Model
::
spatial_dimension
;
++
j
)
{
epsilon
(
i
,
j
)
=
0.5
*
(
grad_u
(
i
,
j
)
+
grad_u
(
j
,
i
));
}
}
}
/* ------------------------------------------------------------------------- */
bool
CouplerSolidPhaseField
::
checkConvergence
(
Array
<
Real
>
&
u_new
,
Array
<
Real
>
&
u_old
,
Array
<
Real
>
&
d_new
,
Array
<
Real
>
&
d_old
)
{
const
Array
<
bool
>
&
blocked_dofs
=
solid
->
getBlockedDOFs
();
UInt
nb_degree_of_freedom
=
u_new
.
size
();
auto
u_n_it
=
u_new
.
begin
();
auto
u_o_it
=
u_old
.
begin
();
auto
bld_it
=
blocked_dofs
.
begin
();
Real
norm
=
0
;
for
(
UInt
n
=
0
;
n
<
nb_degree_of_freedom
;
++
n
,
++
u_n_it
,
++
u_o_it
,
++
bld_it
)
{
if
((
!*
bld_it
))
{
norm
+=
(
*
u_n_it
-
*
u_o_it
)
*
(
*
u_n_it
-
*
u_o_it
);
}
}
norm
=
std
::
sqrt
(
norm
);
auto
d_n_it
=
d_new
.
begin
();
auto
d_o_it
=
d_old
.
begin
();
nb_degree_of_freedom
=
d_new
.
size
();
Real
norm2
=
0
;
for
(
UInt
i
=
0
;
i
<
nb_degree_of_freedom
;
++
i
)
{
norm2
+=
(
*
d_n_it
-
*
d_o_it
);
}
norm2
=
std
::
sqrt
(
norm2
);
Real
error
=
std
::
max
(
norm
,
norm2
);
Real
tolerance
=
1e-8
;
return
error
<
tolerance
;
}
/* -------------------------------------------------------------------------- */
std
::
shared_ptr
<
dumpers
::
Field
>
CouplerSolidPhaseField
::
createElementalField
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
,
UInt
spatial_dimension
,
ElementKind
kind
)
{
return
solid
->
createElementalField
(
field_name
,
group_name
,
padding_flag
,
spatial_dimension
,
kind
);
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
return
field
;
}
/* -------------------------------------------------------------------------- */
std
::
shared_ptr
<
dumpers
::
Field
>
CouplerSolidPhaseField
::
createNodalFieldReal
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
)
{
return
solid
->
createNodalFieldReal
(
field_name
,
group_name
,
padding_flag
);
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
return
field
;
}
/* -------------------------------------------------------------------------- */
std
::
shared_ptr
<
dumpers
::
Field
>
CouplerSolidPhaseField
::
createNodalFieldBool
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
)
{
return
solid
->
createNodalFieldBool
(
field_name
,
group_name
,
padding_flag
);
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
return
field
;
}
/* -----------------------------------------------------------------------*/
void
CouplerSolidPhaseField
::
dump
(
const
std
::
string
&
dumper_name
)
{
solid
->
onDump
();
mesh
.
dump
(
dumper_name
);
}
/* ------------------------------------------------------------------------*/
void
CouplerSolidPhaseField
::
dump
(
const
std
::
string
&
dumper_name
,
UInt
step
)
{
solid
->
onDump
();
mesh
.
dump
(
dumper_name
,
step
);
}
/* ----------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
dump
(
const
std
::
string
&
dumper_name
,
Real
time
,
UInt
step
)
{
solid
->
onDump
();
mesh
.
dump
(
dumper_name
,
time
,
step
);
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
dump
()
{
solid
->
onDump
();
mesh
.
dump
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
dump
(
UInt
step
)
{
solid
->
onDump
();
mesh
.
dump
(
step
);
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidPhaseField
::
dump
(
Real
time
,
UInt
step
)
{
solid
->
onDump
();
mesh
.
dump
(
time
,
step
);
}
}
// namespace akantu
Event Timeline
Log In to Comment