Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91182866
phasefield.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 8, 17:58
Size
12 KB
Mime Type
text/x-c++
Expires
Sun, Nov 10, 17:58 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22209497
Attached To
rAKA akantu
phasefield.hh
View Options
/**
* @file phasefield.hh
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Mar 2 2020
* @date last modification: Mon Mar 2 2020
*
* @brief Mother class for all phasfields
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_factory.hh"
#include "aka_memory.hh"
#include "data_accessor.hh"
#include "parsable.hh"
#include "parser.hh"
/* -------------------------------------------------------------------------- */
#include "internal_field.hh"
#include "random_internal_field.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_PHASEFIELD_HH__
#define __AKANTU_PHASEFIELD_HH__
/* -------------------------------------------------------------------------- */
namespace akantu {
class Model;
class PhaseFieldModel;
class PhaseField;
} // namespace akantu
namespace akantu {
template<typename T>
using InternalPhaseField = InternalFieldTmpl<PhaseField, T>;
using PhaseFieldFactory =
Factory<PhaseField, ID, UInt, const ID &, PhaseFieldModel &, const ID &>;
class PhaseField : public Memory,
public DataAccessor<Element>,
public Parsable {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
PhaseField(const PhaseField & phase) = delete;
PhaseField & operator=(const PhaseField & phase) = delete;
/// Initialize phasefield with defaults
PhaseField(PhaseFieldModel & model, const ID & id = "");
/// Initialize phasefield with custom mesh & fe_engine
PhaseField(PhaseFieldModel & model, UInt dim, const Mesh & mesh,
FEEngine & fe_engine, const ID & id = "");
/// Destructor
~PhaseField() override;
protected:
void initialize();
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
template <typename T> void registerInternal(InternalPhaseField<T> & /*vect*/) {
AKANTU_TO_IMPLEMENT();
}
template <typename T> void unregisterInternal(InternalPhaseField<T> & /*vect*/) {
AKANTU_TO_IMPLEMENT();
}
/// initialize the phasefield computed parameter
virtual void initPhaseField();
///
virtual void beforeSolveStep();
///
virtual void afterSolveStep();
/// assemble the residual for this phasefield
virtual void assembleInternalForces(GhostType ghost_type);
/// assemble the stiffness matrix for this phasefield
virtual void assembleStiffnessMatrix(GhostType ghost_type);
/// compute the driving force for this phasefield
virtual void computeAllDrivingForces(GhostType ghost_type = _not_ghost);
/// compute the driving force for this phasefield
//virtual void computeAllDrivingEnergy(GhostType ghost_type = _not_ghost);
/// save the phi in the phi internal field if needed
virtual void savePreviousState();
/// add an element to the local mesh filter
inline UInt addElement(const ElementType & type, UInt element,
const GhostType & ghost_type);
inline UInt addElement(const Element & element);
/// function to print the contain of the class
void printself(std::ostream & stream, int indent = 0) const override;
protected:
/// resize the internals arrrays
virtual void resizeInternals();
/// function called to updatet the internal parameters when the
/// modifiable parameters are modified
virtual void updateInternalParameters();
// constitutive law for driving force
virtual void computeDrivingForce(const ElementType & /* el_type */,
GhostType /* ghost_type */ = _not_ghost) {
AKANTU_TO_IMPLEMENT();
}
/* ------------------------------------------------------------------------ */
/* DataAccessor inherited members */
/* ------------------------------------------------------------------------ */
public:
inline UInt getNbData(const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void packData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) const override;
inline void unpackData(CommunicationBuffer & buffer,
const Array<Element> & elements,
const SynchronizationTag & tag) override;
template <typename T>
inline void packElementDataHelper(const ElementTypeMapArray<T> & data_to_pack,
CommunicationBuffer & buffer,
const Array<Element> & elements,
const ID & fem_id = ID()) const;
template <typename T>
inline void unpackElementDataHelper(ElementTypeMapArray<T> & data_to_unpack,
CommunicationBuffer & buffer,
const Array<Element> & elements,
const ID & fem_id = ID());
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
AKANTU_GET_MACRO(Name, name, const std::string &);
AKANTU_GET_MACRO(Model, model, const PhaseFieldModel &)
AKANTU_GET_MACRO(ID, Memory::getID(), const ID &);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(Strain, strain, Real);
AKANTU_GET_MACRO(Strain, strain, const ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO_NOT_CONST(Strain, strain, ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(Damage, damage, Real);
AKANTU_GET_MACRO_NOT_CONST(Damage, damage, ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO(Damage, damage, const ElementTypeMapArray<Real> &);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST(ElementFilter, element_filter, UInt);
AKANTU_GET_MACRO(ElementFilter, element_filter,
const ElementTypeMapArray<UInt> &);
template <typename T>
const InternalPhaseField<T> & getInternal(const ID & id) const;
template <typename T> InternalPhaseField<T> & getInternal(const ID & id);
template <typename T>
inline bool isInternal(const ID & id, const ElementKind & element_kind) const;
template <typename T> inline void setParam(const ID & param, T value);
inline const Parameter & getParam(const ID & param) const;
template <typename T>
void flattenInternal(const std::string & field_id,
ElementTypeMapArray<T> & internal_flat,
const GhostType ghost_type = _not_ghost,
ElementKind element_kind = _ek_not_defined) const;
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// boolean to know if the material has been initialized
bool is_init;
std::map<ID, InternalPhaseField<Real> *> internal_vectors_real;
std::map<ID, InternalPhaseField<UInt> *> internal_vectors_uint;
std::map<ID, InternalPhaseField<bool> *> internal_vectors_bool;
protected:
/// Link to the fem object in the model
FEEngine & fem;
/// phasefield name
std::string name;
/// The model to witch the phasefield belong
PhaseFieldModel & model;
/// length scale parameter
Real l0;
/// critical energy release rate
Real g_c;
/// Young's modulus
Real E;
/// Poisson ratio
Real nu;
/// Lame's first parameter
Real lambda;
/// Lame's second paramter
Real mu;
/// spatial dimension
UInt spatial_dimension;
/// list of element handled by the phasefield
ElementTypeMapArray<UInt> element_filter;
/// damage arrays ordered by element types
InternalPhaseField<Real> damage;
/// phi arrays ordered by element types
InternalPhaseField<Real> phi;
/// strain arrays ordered by element types
InternalPhaseField<Real> strain;
/// driving force ordered by element types
InternalPhaseField<Real> driving_force;
/// damage energy ordered by element types
InternalPhaseField<Real> damage_energy;
/// damage energy density ordered by element types
InternalPhaseField<Real> damage_energy_density;
};
/// standard output stream operator
inline std::ostream & operator<<(std::ostream & stream,
const PhaseField & _this) {
_this.printself(stream);
return stream;
}
} // namespace akantu
//namespace akantu {
//using PhaseFieldFactory =
// Factory<PhaseField, ID, UInt, const ID &, PhaseFieldModel &, const ID &>;
//}
#include "phasefield_inline_impl.cc"
#include "internal_field_tmpl.hh"
#include "random_internal_field_tmpl.hh"
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
/* Auto loop */
/* -------------------------------------------------------------------------- */
/// This can be used to automatically write the loop on quadrature points in
/// functions such as computeStress. This macro in addition to write the loop
/// provides two tensors (matrices) sigma and grad_u
#define PHASEFIELD_PHI_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type) \
auto && strain_view = \
make_view(this->strain(el_type, ghost_type), this->spatial_dimension, \
this->spatial_dimension); \
auto phi_view = \
make_view(this->phi(el_type, ghost_type)); \
auto && phi_hist_view = \
make_view(this->phi.previous(el_type, ghost_type)); \
\
for (auto && data : zip(strain_view, phi_view, phi_hist_view)) { \
[[gnu::unused]] Matrix<Real> & strain_q = std::get<0>(data); \
[[gnu::unused]] Real & phi_q = std::get<1>(data); \
[[gnu::unused]] Real & phi_hist_q = std::get<2>(data);
#define PHASEFIELD_PHI_QUADRATURE_POINT_LOOP_END }
#define PHASEFIELD_ENERGY_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type) \
auto && eng_den_view = \
make_view(this->damage_energy_density(el_type, ghost_type)); \
auto phi_view = \
make_view(this->phi(el_type, ghost_type)); \
\
for (auto && data : zip(eng_den_view, phi_view)) { \
[[gnu::unused]] Real & dam_eng_density = std::get<0>(data); \
[[gnu::unused]] Real & phi_q = std::get<1>(data);
#define PHASEFIELD_ENERGY_QUADRATURE_POINT_LOOP_END }
#define INSTANTIATE_PHASEFIELD_ONLY(phase_name) \
template class phase_name<1>; \
template class phase_name<2>; \
template class phase_name<3>
#define PHASEFIELD_DEFAULT_PER_DIM_ALLOCATOR(id, phase_name) \
[](UInt dim, const ID &, PhaseFieldModel & model, \
const ID & id) -> std::unique_ptr<PhaseField> { \
switch (dim) { \
case 1: \
case 2: \
case 3: \
return std::make_unique<phase_name>(model, id); \
default: \
AKANTU_EXCEPTION("The dimension " \
<< dim << "is not a valid dimension for the phasefield " \
<< #id); \
} \
}
#define INSTANTIATE_PHASEFIELD(id, phase_name) \
static bool phasefield_is_alocated_##id [[gnu::unused]] = \
PhaseFieldFactory::getInstance().registerAllocator( \
#id, PHASEFIELD_DEFAULT_PER_DIM_ALLOCATOR(id, phase_name))
#endif
Event Timeline
Log In to Comment