Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90406123
shape_functions.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 09:47
Size
9 KB
Mime Type
text/x-c++
Expires
Sun, Nov 3, 09:47 (2 d)
Engine
blob
Format
Raw Data
Handle
21264320
Attached To
rAKA akantu
shape_functions.cc
View Options
/**
* @file shape_functions.cc
*
* @author Nicolas Richart
*
* @date creation Thu Jul 27 2017
*
* @brief implementation of th shape functions interface
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "shape_functions.hh"
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
ShapeFunctions
::
ShapeFunctions
(
const
Mesh
&
mesh
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
Memory
(
id
,
memory_id
),
shapes
(
"shapes_generic"
,
id
,
memory_id
),
shapes_derivatives
(
"shapes_derivatives_generic"
,
id
,
memory_id
),
mesh
(
mesh
)
{}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
inline
void
ShapeFunctions
::
initElementalFieldInterpolationFromIntegrationPoints
(
const
Array
<
Real
>
&
interpolation_points_coordinates
,
ElementTypeMapArray
<
Real
>
&
interpolation_points_coordinates_matrices
,
ElementTypeMapArray
<
Real
>
&
quad_points_coordinates_inv_matrices
,
const
Array
<
Real
>
&
quadrature_points_coordinates
,
const
GhostType
&
ghost_type
,
const
Array
<
UInt
>
&
element_filter
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
UInt
nb_element
=
this
->
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
nb_element_filter
;
if
(
element_filter
==
empty_filter
)
nb_element_filter
=
nb_element
;
else
nb_element_filter
=
element_filter
.
size
();
UInt
nb_quad_per_element
=
GaussIntegrationElement
<
type
>::
getNbQuadraturePoints
();
UInt
nb_interpolation_points_per_elem
=
interpolation_points_coordinates
.
size
()
/
nb_element
;
AKANTU_DEBUG_ASSERT
(
interpolation_points_coordinates
.
size
()
%
nb_element
==
0
,
"Number of interpolation points should be a multiple of "
"total number of elements"
);
if
(
!
quad_points_coordinates_inv_matrices
.
exists
(
type
,
ghost_type
))
quad_points_coordinates_inv_matrices
.
alloc
(
nb_element_filter
,
nb_quad_per_element
*
nb_quad_per_element
,
type
,
ghost_type
);
else
quad_points_coordinates_inv_matrices
(
type
,
ghost_type
)
.
resize
(
nb_element_filter
);
if
(
!
interpolation_points_coordinates_matrices
.
exists
(
type
,
ghost_type
))
interpolation_points_coordinates_matrices
.
alloc
(
nb_element_filter
,
nb_interpolation_points_per_elem
*
nb_quad_per_element
,
type
,
ghost_type
);
else
interpolation_points_coordinates_matrices
(
type
,
ghost_type
)
.
resize
(
nb_element_filter
);
Array
<
Real
>
&
quad_inv_mat
=
quad_points_coordinates_inv_matrices
(
type
,
ghost_type
);
Array
<
Real
>
&
interp_points_mat
=
interpolation_points_coordinates_matrices
(
type
,
ghost_type
);
Matrix
<
Real
>
quad_coord_matrix
(
nb_quad_per_element
,
nb_quad_per_element
);
Array
<
Real
>::
const_matrix_iterator
quad_coords_it
=
quadrature_points_coordinates
.
begin_reinterpret
(
spatial_dimension
,
nb_quad_per_element
,
nb_element_filter
);
Array
<
Real
>::
const_matrix_iterator
points_coords_begin
=
interpolation_points_coordinates
.
begin_reinterpret
(
spatial_dimension
,
nb_interpolation_points_per_elem
,
nb_element
);
Array
<
Real
>::
matrix_iterator
inv_quad_coord_it
=
quad_inv_mat
.
begin
(
nb_quad_per_element
,
nb_quad_per_element
);
Array
<
Real
>::
matrix_iterator
int_points_mat_it
=
interp_points_mat
.
begin
(
nb_interpolation_points_per_elem
,
nb_quad_per_element
);
/// loop over the elements of the current material and element type
for
(
UInt
el
=
0
;
el
<
nb_element_filter
;
++
el
,
++
inv_quad_coord_it
,
++
int_points_mat_it
,
++
quad_coords_it
)
{
/// matrix containing the quadrature points coordinates
const
Matrix
<
Real
>
&
quad_coords
=
*
quad_coords_it
;
/// matrix to store the matrix inversion result
Matrix
<
Real
>
&
inv_quad_coord_matrix
=
*
inv_quad_coord_it
;
/// insert the quad coordinates in a matrix compatible with the
/// interpolation
buildElementalFieldInterpolationMatrix
<
type
>
(
quad_coords
,
quad_coord_matrix
);
/// invert the interpolation matrix
inv_quad_coord_matrix
.
inverse
(
quad_coord_matrix
);
/// matrix containing the interpolation points coordinates
const
Matrix
<
Real
>
&
points_coords
=
points_coords_begin
[
element_filter
(
el
)];
/// matrix to store the interpolation points coordinates
/// compatible with these functions
Matrix
<
Real
>
&
inv_points_coord_matrix
=
*
int_points_mat_it
;
/// insert the quad coordinates in a matrix compatible with the
/// interpolation
buildElementalFieldInterpolationMatrix
<
type
>
(
points_coords
,
inv_points_coord_matrix
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
ShapeFunctions
::
initElementalFieldInterpolationFromIntegrationPoints
(
const
ElementTypeMapArray
<
Real
>
&
interpolation_points_coordinates
,
ElementTypeMapArray
<
Real
>
&
interpolation_points_coordinates_matrices
,
ElementTypeMapArray
<
Real
>
&
quad_points_coordinates_inv_matrices
,
const
ElementTypeMapArray
<
Real
>
&
quadrature_points_coordinates
,
const
ElementTypeMapArray
<
UInt
>
*
element_filter
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
for
(
auto
ghost_type
:
ghost_types
)
{
Mesh
::
type_iterator
it
,
last
;
if
(
element_filter
)
{
it
=
element_filter
->
firstType
(
spatial_dimension
,
ghost_type
);
last
=
element_filter
->
lastType
(
spatial_dimension
,
ghost_type
);
}
else
{
it
=
mesh
.
firstType
(
spatial_dimension
,
ghost_type
);
last
=
mesh
.
lastType
(
spatial_dimension
,
ghost_type
);
}
for
(;
it
!=
last
;
++
it
)
{
ElementType
type
=
*
it
;
UInt
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
if
(
nb_element
==
0
)
continue
;
const
Array
<
UInt
>
*
elem_filter
;
if
(
element_filter
)
elem_filter
=
&
((
*
element_filter
)(
type
,
ghost_type
));
else
elem_filter
=
&
(
empty_filter
);
#define AKANTU_INIT_ELEMENTAL_FIELD_INTERPOLATION_FROM_C_POINTS(type) \
this->initElementalFieldInterpolationFromIntegrationPoints<type>( \
interpolation_points_coordinates(type, ghost_type), \
interpolation_points_coordinates_matrices, \
quad_points_coordinates_inv_matrices, \
quadrature_points_coordinates(type, ghost_type), ghost_type, \
*elem_filter)
AKANTU_BOOST_REGULAR_ELEMENT_SWITCH
(
AKANTU_INIT_ELEMENTAL_FIELD_INTERPOLATION_FROM_C_POINTS
);
#undef AKANTU_INIT_ELEMENTAL_FIELD_INTERPOLATION_FROM_C_POINTS
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
ShapeFunctions
::
interpolateElementalFieldFromIntegrationPoints
(
const
ElementTypeMapArray
<
Real
>
&
field
,
const
ElementTypeMapArray
<
Real
>
&
interpolation_points_coordinates_matrices
,
const
ElementTypeMapArray
<
Real
>
&
quad_points_coordinates_inv_matrices
,
ElementTypeMapArray
<
Real
>
&
result
,
const
GhostType
&
ghost_type
,
const
ElementTypeMapArray
<
UInt
>
*
element_filter
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
Mesh
::
type_iterator
it
,
last
;
if
(
element_filter
)
{
it
=
element_filter
->
firstType
(
spatial_dimension
,
ghost_type
);
last
=
element_filter
->
lastType
(
spatial_dimension
,
ghost_type
);
}
else
{
it
=
mesh
.
firstType
(
spatial_dimension
,
ghost_type
);
last
=
mesh
.
lastType
(
spatial_dimension
,
ghost_type
);
}
for
(;
it
!=
last
;
++
it
)
{
ElementType
type
=
*
it
;
UInt
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
if
(
nb_element
==
0
)
continue
;
const
Array
<
UInt
>
*
elem_filter
;
if
(
element_filter
)
elem_filter
=
&
((
*
element_filter
)(
type
,
ghost_type
));
else
elem_filter
=
&
(
empty_filter
);
#define AKANTU_INTERPOLATE_ELEMENTAL_FIELD_FROM_C_POINTS(type) \
interpolateElementalFieldFromIntegrationPoints<type>( \
field(type, ghost_type), \
interpolation_points_coordinates_matrices(type, ghost_type), \
quad_points_coordinates_inv_matrices(type, ghost_type), result, \
ghost_type, *elem_filter)
AKANTU_BOOST_REGULAR_ELEMENT_SWITCH
(
AKANTU_INTERPOLATE_ELEMENTAL_FIELD_FROM_C_POINTS
);
#undef AKANTU_INTERPOLATE_ELEMENTAL_FIELD_FROM_C_POINTS
}
AKANTU_DEBUG_OUT
();
}
}
// namespace akantu
Event Timeline
Log In to Comment