Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90362529
solver_mumps.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Oct 31, 23:49
Size
11 KB
Mime Type
text/x-c
Expires
Sat, Nov 2, 23:49 (2 d)
Engine
blob
Format
Raw Data
Handle
22062335
Attached To
rAKA akantu
solver_mumps.cc
View Options
/**
* @file solver_mumps.cc
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Mon Dec 13 2010
* @date last modification: Tue Jan 19 2016
*
* @brief implem of SolverMumps class
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
* @section DESCRIPTION
*
* @subsection Ctrl_param Control parameters
*
* ICNTL(1),
* ICNTL(2),
* ICNTL(3) : output streams for error, diagnostics, and global messages
*
* ICNTL(4) : verbose level : 0 no message - 4 all messages
*
* ICNTL(5) : type of matrix, 0 assembled, 1 elementary
*
* ICNTL(6) : control the permutation and scaling(default 7) see mumps doc for
* more information
*
* ICNTL(7) : determine the pivot order (default 7) see mumps doc for more
* information
*
* ICNTL(8) : describe the scaling method used
*
* ICNTL(9) : 1 solve A x = b, 0 solve At x = b
*
* ICNTL(10) : number of iterative refinement when NRHS = 1
*
* ICNTL(11) : > 0 return statistics
*
* ICNTL(12) : only used for SYM = 2, ordering strategy
*
* ICNTL(13) :
*
* ICNTL(14) : percentage of increase of the estimated working space
*
* ICNTL(15-17) : not used
*
* ICNTL(18) : only used if ICNTL(5) = 0, 0 matrix centralized, 1 structure on
* host and mumps give the mapping, 2 structure on host and distributed matrix
* for facto, 3 distributed matrix
*
* ICNTL(19) : > 0, Shur complement returned
*
* ICNTL(20) : 0 rhs dense, 1 rhs sparse
*
* ICNTL(21) : 0 solution in rhs, 1 solution distributed in ISOL_loc and SOL_loc
* allocated by user
*
* ICNTL(22) : 0 in-core, 1 out-of-core
*
* ICNTL(23) : maximum memory allocatable by mumps pre proc
*
* ICNTL(24) : controls the detection of "null pivot rows"
*
* ICNTL(25) :
*
* ICNTL(26) :
*
* ICNTL(27) :
*
* ICNTL(28) : 0 automatic choice, 1 sequential analysis, 2 parallel analysis
*
* ICNTL(29) : 0 automatic choice, 1 PT-Scotch, 2 ParMetis
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#if defined(AKANTU_USE_MPI)
#include "static_communicator_mpi.hh"
#include "mpi_type_wrapper.hh"
#endif
#include "solver_mumps.hh"
#include "dof_synchronizer.hh"
/* -------------------------------------------------------------------------- */
// static std::ostream & operator <<(std::ostream & stream, const DMUMPS_STRUC_C
// & _this) {
// stream << "DMUMPS Data [" << std::endl;
// stream << " + job : " << _this.job << std::endl;
// stream << " + par : " << _this.par << std::endl;
// stream << " + sym : " << _this.sym << std::endl;
// stream << " + comm_fortran : " << _this.comm_fortran << std::endl;
// stream << " + nz : " << _this.nz << std::endl;
// stream << " + irn : " << _this.irn << std::endl;
// stream << " + jcn : " << _this.jcn << std::endl;
// stream << " + nz_loc : " << _this.nz_loc << std::endl;
// stream << " + irn_loc : " << _this.irn_loc << std::endl;
// stream << " + jcn_loc : " << _this.jcn_loc << std::endl;
// stream << "]";
// return stream;
// }
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
SolverMumps
::
SolverMumps
(
SparseMatrix
&
matrix
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
Solver
(
matrix
,
id
,
memory_id
),
is_mumps_data_initialized
(
false
),
rhs_is_local
(
true
)
{
AKANTU_DEBUG_IN
();
#ifdef AKANTU_USE_MPI
parallel_method
=
SolverMumpsOptions
::
_fully_distributed
;
#else
// AKANTU_USE_MPI
parallel_method
=
SolverMumpsOptions
::
_not_parallel
;
#endif
// AKANTU_USE_MPI
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
SolverMumps
::~
SolverMumps
()
{
AKANTU_DEBUG_IN
();
this
->
destroyInternalData
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolverMumps
::
destroyInternalData
()
{
AKANTU_DEBUG_IN
();
if
(
this
->
is_mumps_data_initialized
)
{
this
->
mumps_data
.
job
=
_smj_destroy
;
// destroy
dmumps_c
(
&
this
->
mumps_data
);
this
->
is_mumps_data_initialized
=
false
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolverMumps
::
initMumpsData
()
{
// Default Scaling
icntl
(
8
)
=
77
;
// Assembled matrix
icntl
(
5
)
=
0
;
/// Default centralized dense second member
icntl
(
20
)
=
0
;
icntl
(
21
)
=
0
;
icntl
(
28
)
=
0
;
// automatic choice for analysis analysis
switch
(
this
->
parallel_method
)
{
case
SolverMumpsOptions
::
_fully_distributed:
icntl
(
18
)
=
3
;
// fully distributed
this
->
mumps_data
.
nz_loc
=
matrix
->
getNbNonZero
();
this
->
mumps_data
.
irn_loc
=
matrix
->
getIRN
().
storage
();
this
->
mumps_data
.
jcn_loc
=
matrix
->
getJCN
().
storage
();
break
;
case
SolverMumpsOptions
::
_not_parallel:
case
SolverMumpsOptions
::
_master_slave_distributed:
icntl
(
18
)
=
0
;
// centralized
if
(
prank
==
0
)
{
this
->
mumps_data
.
nz
=
matrix
->
getNbNonZero
();
this
->
mumps_data
.
irn
=
matrix
->
getIRN
().
storage
();
this
->
mumps_data
.
jcn
=
matrix
->
getJCN
().
storage
();
}
else
{
this
->
mumps_data
.
nz
=
0
;
this
->
mumps_data
.
irn
=
NULL
;
this
->
mumps_data
.
jcn
=
NULL
;
}
break
;
default
:
AKANTU_DEBUG_ERROR
(
"This case should not happen!!"
);
}
}
/* -------------------------------------------------------------------------- */
void
SolverMumps
::
initialize
(
SolverOptions
&
options
)
{
AKANTU_DEBUG_IN
();
if
(
SolverMumpsOptions
*
opt
=
dynamic_cast
<
SolverMumpsOptions
*>
(
&
options
))
{
this
->
parallel_method
=
opt
->
parallel_method
;
}
this
->
mumps_data
.
par
=
1
;
// The host is part of computations
switch
(
this
->
parallel_method
)
{
case
SolverMumpsOptions
::
_not_parallel:
break
;
case
SolverMumpsOptions
::
_master_slave_distributed:
this
->
mumps_data
.
par
=
0
;
// The host is not part of the computations
case
SolverMumpsOptions
::
_fully_distributed:
#ifdef AKANTU_USE_MPI
const
StaticCommunicatorMPI
&
mpi_st_comm
=
dynamic_cast
<
const
StaticCommunicatorMPI
&>
(
communicator
.
getRealStaticCommunicator
());
this
->
mumps_data
.
comm_fortran
=
MPI_Comm_c2f
(
mpi_st_comm
.
getMPITypeWrapper
().
getMPICommunicator
());
#endif
break
;
}
this
->
mumps_data
.
sym
=
2
*
(
matrix
->
getSparseMatrixType
()
==
_symmetric
);
this
->
prank
=
communicator
.
whoAmI
();
this
->
mumps_data
.
job
=
_smj_initialize
;
// initialize
dmumps_c
(
&
this
->
mumps_data
);
this
->
is_mumps_data_initialized
=
true
;
/* ------------------------------------------------------------------------ */
UInt
size
=
matrix
->
getSize
();
if
(
prank
==
0
)
{
std
::
stringstream
sstr_rhs
;
sstr_rhs
<<
id
<<
":rhs"
;
this
->
rhs
=
&
(
alloc
<
Real
>
(
sstr_rhs
.
str
(),
size
,
1
,
0.
));
}
else
{
this
->
rhs
=
NULL
;
}
this
->
mumps_data
.
nz_alloc
=
0
;
this
->
mumps_data
.
n
=
size
;
/* ------------------------------------------------------------------------ */
// Output setup
if
(
AKANTU_DEBUG_TEST
(
dblTrace
))
{
icntl
(
1
)
=
6
;
icntl
(
2
)
=
2
;
icntl
(
3
)
=
2
;
icntl
(
4
)
=
4
;
}
else
{
/// No outputs
icntl
(
1
)
=
6
;
// error output
icntl
(
2
)
=
0
;
// dignostics output
icntl
(
3
)
=
0
;
// informations
icntl
(
4
)
=
0
;
// no outputs
}
if
(
AKANTU_DEBUG_TEST
(
dblDump
))
{
strcpy
(
this
->
mumps_data
.
write_problem
,
"mumps_matrix.mtx"
);
}
this
->
analysis
();
// icntl(14) = 80;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolverMumps
::
setRHS
(
Array
<
Real
>
&
rhs
)
{
if
(
prank
==
0
)
{
// std::copy(rhs.storage(), rhs.storage() + this->rhs->getSize(),
// this->rhs->storage());
DebugLevel
dbl
=
debug
::
getDebugLevel
();
debug
::
setDebugLevel
(
dblError
);
matrix
->
getDOFSynchronizer
().
gather
(
rhs
,
0
,
this
->
rhs
);
debug
::
setDebugLevel
(
dbl
);
}
else
{
this
->
matrix
->
getDOFSynchronizer
().
gather
(
rhs
,
0
);
}
}
/* -------------------------------------------------------------------------- */
void
SolverMumps
::
analysis
()
{
AKANTU_DEBUG_IN
();
initMumpsData
();
this
->
mumps_data
.
job
=
_smj_analyze
;
// analyze
dmumps_c
(
&
this
->
mumps_data
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolverMumps
::
factorize
()
{
AKANTU_DEBUG_IN
();
if
(
parallel_method
==
SolverMumpsOptions
::
_fully_distributed
)
this
->
mumps_data
.
a_loc
=
this
->
matrix
->
getA
().
storage
();
else
{
if
(
prank
==
0
)
this
->
mumps_data
.
a
=
this
->
matrix
->
getA
().
storage
();
}
if
(
prank
==
0
)
{
this
->
mumps_data
.
rhs
=
this
->
rhs
->
storage
();
}
this
->
mumps_data
.
job
=
_smj_factorize
;
// factorize
dmumps_c
(
&
this
->
mumps_data
);
this
->
printError
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolverMumps
::
solve
()
{
AKANTU_DEBUG_IN
();
if
(
prank
==
0
)
{
this
->
mumps_data
.
rhs
=
this
->
rhs
->
storage
();
}
this
->
mumps_data
.
job
=
_smj_solve
;
// solve
dmumps_c
(
&
this
->
mumps_data
);
this
->
printError
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolverMumps
::
solve
(
Array
<
Real
>
&
solution
)
{
AKANTU_DEBUG_IN
();
this
->
solve
();
if
(
prank
==
0
)
{
matrix
->
getDOFSynchronizer
().
scatter
(
solution
,
0
,
this
->
rhs
);
// std::copy(this->rhs->storage(), this->rhs->storage() +
// this->rhs->getSize(), solution.storage());
}
else
{
this
->
matrix
->
getDOFSynchronizer
().
scatter
(
solution
,
0
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
SolverMumps
::
printError
()
{
Int
_info_v
[
2
];
_info_v
[
0
]
=
info
(
1
);
// to get errors
_info_v
[
1
]
=
-
info
(
1
);
// to get warnings
communicator
.
allReduce
(
_info_v
,
2
,
_so_min
);
_info_v
[
1
]
=
-
_info_v
[
1
];
if
(
_info_v
[
0
]
<
0
)
{
// < 0 is an error
switch
(
_info_v
[
0
])
{
case
-
10
:
AKANTU_DEBUG_ERROR
(
"The matrix is singular"
);
break
;
case
-
9
:
{
icntl
(
14
)
+=
10
;
if
(
icntl
(
14
)
!=
90
)
{
// std::cout << "Dynamic memory increase of 10%" << std::endl;
AKANTU_DEBUG_WARNING
(
"MUMPS dynamic memory is insufficient it will be increased of 10%"
);
this
->
analysis
();
this
->
factorize
();
this
->
solve
();
}
else
{
AKANTU_DEBUG_ERROR
(
"The MUMPS workarray is too small INFO(2)="
<<
info
(
2
)
<<
"No further increase possible"
);
break
;
}
}
default
:
AKANTU_DEBUG_ERROR
(
"Error in mumps during solve process, check mumps "
"user guide INFO(1) = "
<<
_info_v
[
1
]);
}
}
else
if
(
_info_v
[
1
]
>
0
)
{
AKANTU_DEBUG_WARNING
(
"Warning in mumps during solve process, check mumps "
"user guide INFO(1) = "
<<
_info_v
[
1
]);
}
}
__END_AKANTU__
Event Timeline
Log In to Comment