Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90983497
coupler_solid_contact.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 15:51
Size
13 KB
Mime Type
text/x-c
Expires
Fri, Nov 8, 15:51 (2 d)
Engine
blob
Format
Raw Data
Handle
22170746
Attached To
rAKA akantu
coupler_solid_contact.cc
View Options
/**
* @file coupler_solid_contact_explicit.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Thu Jan 17 2019
* @date last modification: Thu Jan 17 2019
*
* @brief class for coupling of solid mechanics and conatct mechanics
* model in explicit
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "coupler_solid_contact.hh"
#include "dumpable_inline_impl.hh"
#include "integrator_gauss.hh"
#include "shape_lagrange.hh"
#ifdef AKANTU_USE_IOHELPER
#include "dumper_iohelper_paraview.hh"
#endif
/* -------------------------------------------------------------------------- */
namespace
akantu
{
CouplerSolidContact
::
CouplerSolidContact
(
Mesh
&
mesh
,
UInt
dim
,
const
ID
&
id
,
std
::
shared_ptr
<
DOFManager
>
dof_manager
,
const
ModelType
model_type
)
:
Model
(
mesh
,
model_type
,
dof_manager
,
dim
,
id
)
{
AKANTU_DEBUG_IN
();
this
->
registerFEEngineObject
<
MyFEEngineType
>
(
"CouplerSolidContact"
,
mesh
,
Model
::
spatial_dimension
);
#if defined(AKANTU_USE_IOHELPER)
this
->
mesh
.
registerDumper
<
DumperParaview
>
(
"coupler_solid_contact"
,
id
,
true
);
this
->
mesh
.
addDumpMeshToDumper
(
"coupler_solid_contact"
,
mesh
,
Model
::
spatial_dimension
,
_not_ghost
,
_ek_regular
);
#endif
this
->
registerDataAccessor
(
*
this
);
solid
=
new
SolidMechanicsModel
(
mesh
,
Model
::
spatial_dimension
,
"solid_mechanics_model"
,
0
,
this
->
dof_manager
);
contact
=
new
ContactMechanicsModel
(
mesh
,
Model
::
spatial_dimension
,
"contact_mechanics_model"
,
0
,
this
->
dof_manager
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
CouplerSolidContact
::~
CouplerSolidContact
()
{}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
initFullImpl
(
const
ModelOptions
&
options
)
{
Model
::
initFullImpl
(
options
);
this
->
initBC
(
*
this
,
*
displacement
,
*
displacement_increment
,
*
external_force
);
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
initModel
()
{
getFEEngine
().
initShapeFunctions
(
_not_ghost
);
getFEEngine
().
initShapeFunctions
(
_ghost
);
}
/* -------------------------------------------------------------------------- */
FEEngine
&
CouplerSolidContact
::
getFEEngineBoundary
(
const
ID
&
name
)
{
return
dynamic_cast
<
FEEngine
&>
(
getFEEngineClassBoundary
<
MyFEEngineType
>
(
name
));
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
initSolver
(
TimeStepSolverType
,
NonLinearSolverType
)
{
DOFManager
&
dof_manager
=
this
->
getDOFManager
();
/*this->allocNodalField(this->displacement, spatial_dimension, "displacement");
this->allocNodalField(this->displacement_increment, spatial_dimension,
"displacement_increment");
this->allocNodalField(this->external_force, spatial_dimension,
"external_force");
if (not dof_manager.hasDOFs("displacement")) {
dof_manager.registerDOFs("displacement", *this->displacement, _dst_nodal);
}*/
}
/* -------------------------------------------------------------------------- */
std
::
tuple
<
ID
,
TimeStepSolverType
>
CouplerSolidContact
::
getDefaultSolverID
(
const
AnalysisMethod
&
method
)
{
switch
(
method
)
{
case
_explicit_contact:
{
return
std
::
make_tuple
(
"explicit_contact"
,
_tsst_dynamic
);
}
case
_implicit_contact:
{
return
std
::
make_tuple
(
"implicit_contact"
,
_tsst_static
);
}
default
:
return
std
::
make_tuple
(
"unkown"
,
_tsst_not_defined
);
}
}
/* -------------------------------------------------------------------------- */
ModelSolverOptions
CouplerSolidContact
::
getDefaultSolverOptions
(
const
TimeStepSolverType
&
type
)
const
{
ModelSolverOptions
options
;
switch
(
type
)
{
case
_tsst_dynamic:
{
options
.
non_linear_solver_type
=
_nls_newton_raphson
;
options
.
integration_scheme_type
[
"displacement"
]
=
_ist_pseudo_time
;
options
.
solution_type
[
"displacement"
]
=
IntegrationScheme
::
_not_defined
;
break
;
}
case
_tsst_static:
{
options
.
non_linear_solver_type
=
_nls_newton_raphson
;
options
.
integration_scheme_type
[
"displacement"
]
=
_ist_pseudo_time
;
options
.
solution_type
[
"displacement"
]
=
IntegrationScheme
::
_not_defined
;
break
;
}
default
:
AKANTU_EXCEPTION
(
type
<<
" is not a valid time step solver type"
);
break
;
}
return
options
;
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
assembleResidual
()
{
solid
->
assembleInternalForces
();
contact
->
assembleInternalForces
();
auto
&
contact_force
=
contact
->
getInternalForce
();
auto
&
external_force
=
solid
->
getExternalForce
();
auto
&
internal_force
=
solid
->
getInternalForce
();
/*auto & blocked_dofs = solid->getBlockedDOFs();
for (auto && values : zip(make_view(external_force),
make_view(contact_force),
make_view(blocked_dofs))) {
auto & f_ext = std::get<0>(values);
auto & f_con = std::get<1>(values);
auto & blocked = std::get<2>(values);
if (!blocked)
f_ext = f_con;
}*/
/* ------------------------------------------------------------------------ */
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
external_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
internal_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"displacement"
,
contact_force
,
1
);
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
beforeSolveStep
()
{
contact
->
search
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
afterSolveStep
()
{}
/* -------------------------------------------------------------------------- */
MatrixType
CouplerSolidContact
::
getMatrixType
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"K"
)
return
_symmetric
;
return
_mt_not_defined
;
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
assembleMatrix
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"K"
)
{
solid
->
assembleStiffnessMatrix
();
contact
->
assembleStiffnessMatrix
();
}
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
assembleLumpedMatrix
(
const
ID
&
/*matrix_id*/
)
{
AKANTU_TO_IMPLEMENT
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
coupleExternalForces
()
{
auto
&
contact_force
=
contact
->
getInternalForce
();
auto
&
external_force
=
solid
->
getExternalForce
();
auto
&
blocked_dofs
=
solid
->
getBlockedDOFs
();
for
(
auto
&&
values
:
zip
(
make_view
(
external_force
),
make_view
(
contact_force
),
make_view
(
blocked_dofs
)))
{
auto
&
f_ext
=
std
::
get
<
0
>
(
values
);
auto
&
f_con
=
std
::
get
<
1
>
(
values
);
auto
&
blocked
=
std
::
get
<
2
>
(
values
);
if
(
!
blocked
)
f_ext
=
f_con
;
}
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
coupleStiffnessMatrices
()
{
auto
&
contact_stiffness
=
const_cast
<
SparseMatrix
&>
(
contact
->
getDOFManager
().
getMatrix
(
"K"
));
auto
&
solid_stiffness
=
const_cast
<
SparseMatrix
&>
(
solid
->
getDOFManager
().
getMatrix
(
"K"
));
solid_stiffness
.
add
(
contact_stiffness
);
}
/* -------------------------------------------------------------------------- */
// void CouplerSolidContact::solve() {
// search for contacts
// contact.search();
// can be handled by beforeSolveStep()
/// assemble contact forces
/// contact.assembleInternalForces();
/// assemble contact stiffness matrix
/// contact.assembleStiffnessMatrix();
/// can be handled by solveStep but no need to solve it
/// couple the external forces
// this->coupleExternalForces();
// assemble the internal forces solid mechanics model
// assemble the stiffness forces
// couple the contact mechanics model stiffness to solid mechanics
// this->coupleStiffnessMatrices();
// and solve the solid mechanics model with new stifffness anf
// residual
/// all the above steps for solid mehcanics should be handled by the
// solveStep method with solvercall back to see that stifffness
// matrices are coupled
// ContactSolver callback(solid, contact);
// contact.solveStep();
// solid.solveStep(callback);
//}
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
/* -------------------------------------------------------------------------- */
dumper
::
Field
*
CouplerSolidContact
::
createElementalField
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
,
const
UInt
&
spatial_dimension
,
const
ElementKind
&
kind
)
{
dumper
::
Field
*
field
=
nullptr
;
field
=
solid
->
createElementalField
(
field_name
,
group_name
,
padding_flag
,
spatial_dimension
,
kind
);
return
field
;
}
/* -------------------------------------------------------------------------- */
dumper
::
Field
*
CouplerSolidContact
::
createNodalFieldReal
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
)
{
dumper
::
Field
*
field
=
nullptr
;
field
=
solid
->
createNodalFieldReal
(
field_name
,
group_name
,
padding_flag
);
return
field
;
}
/* -------------------------------------------------------------------------- */
dumper
::
Field
*
CouplerSolidContact
::
createNodalFieldBool
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
__attribute__
((
unused
))
bool
padding_flag
)
{
dumper
::
Field
*
field
=
nullptr
;
field
=
solid
->
createNodalFieldBool
(
field_name
,
group_name
,
padding_flag
);
return
field
;
}
#else
/* -------------------------------------------------------------------------- */
dumper
::
Field
*
CouplerSolidContact
::
createElementalField
(
const
std
::
string
&
,
const
std
::
string
&
,
bool
,
const
UInt
&
,
const
ElementKind
&
)
{
return
nullptr
;
}
/* ----------------------------------------------------------------------- */
dumper
::
Field
*
CouplerSolidContact
::
createNodalFieldReal
(
const
std
::
string
&
,
const
std
::
string
&
,
bool
)
{
return
nullptr
;
}
/*-------------------------------------------------------------------*/
dumper
::
Field
*
CouplerSolidContact
::
createNodalFieldBool
(
const
std
::
string
&
,
const
std
::
string
&
,
bool
)
{
return
nullptr
;
}
#endif
/* -------------------------------------------------------------------------- */
UInt
CouplerSolidContact
::
getNbData
(
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
/*tag*/
)
const
{
AKANTU_DEBUG_IN
();
UInt
size
=
0
;
UInt
nb_nodes_per_element
=
0
;
for
(
const
Element
&
el
:
elements
)
{
nb_nodes_per_element
+=
Mesh
::
getNbNodesPerElement
(
el
.
type
);
}
AKANTU_DEBUG_OUT
();
return
size
;
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
packData
(
CommunicationBuffer
&
/*buffer*/
,
const
Array
<
Element
>
&
/*elements*/
,
const
SynchronizationTag
&
/*tag*/
)
const
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
unpackData
(
CommunicationBuffer
&
/*buffer*/
,
const
Array
<
Element
>
&
/*elements*/
,
const
SynchronizationTag
&
/*tag*/
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
UInt
CouplerSolidContact
::
getNbData
(
const
Array
<
UInt
>
&
dofs
,
const
SynchronizationTag
&
/*tag*/
)
const
{
AKANTU_DEBUG_IN
();
UInt
size
=
0
;
// UInt nb_nodes = mesh.getNbNodes();
AKANTU_DEBUG_OUT
();
return
size
*
dofs
.
size
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
packData
(
CommunicationBuffer
&
/*buffer*/
,
const
Array
<
UInt
>
&
/*dofs*/
,
const
SynchronizationTag
&
/*tag*/
)
const
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
CouplerSolidContact
::
unpackData
(
CommunicationBuffer
&
/*buffer*/
,
const
Array
<
UInt
>
&
/*dofs*/
,
const
SynchronizationTag
&
/*tag*/
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
}
// namespace akantu
Event Timeline
Log In to Comment