Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91282166
shape_structural_inline_impl.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 9, 15:40
Size
9 KB
Mime Type
text/x-c++
Expires
Mon, Nov 11, 15:40 (2 d)
Engine
blob
Format
Raw Data
Handle
22095299
Attached To
rAKA akantu
shape_structural_inline_impl.cc
View Options
/**
* @file shape_structural_inline_impl.cc
*
* @author Fabian Barras <fabian.barras@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Mon Dec 13 2010
* @date last modification: Thu Oct 15 2015
*
* @brief ShapeStructural inline implementation
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "mesh_iterators.hh"
#include "shape_structural.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_SHAPE_STRUCTURAL_INLINE_IMPL_CC__
#define __AKANTU_SHAPE_STRUCTURAL_INLINE_IMPL_CC__
namespace
akantu
{
template
<
ElementKind
kind
>
inline
void
ShapeStructural
<
kind
>::
initShapeFunctions
(
const
Array
<
Real
>
&
/* unused */
,
const
Matrix
<
Real
>
&
/* unused */
,
const
ElementType
&
/* unused */
,
const
GhostType
&
/* unused */
)
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
/* -------------------------------------------------------------------------- */
#define INIT_SHAPE_FUNCTIONS(type) \
setIntegrationPointsByType<type>(integration_points, ghost_type); \
precomputeShapesOnIntegrationPoints<type>(nodes, ghost_type); \
precomputeShapeDerivativesOnIntegrationPoints<type>(nodes, ghost_type);
template
<>
inline
void
ShapeStructural
<
_ek_structural
>::
initShapeFunctions
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
AKANTU_BOOST_STRUCTURAL_ELEMENT_SWITCH
(
INIT_SHAPE_FUNCTIONS
);
}
#undef INIT_SHAPE_FUNCTIONS
/* -------------------------------------------------------------------------- */
template
<>
template
<
ElementType
type
>
void
ShapeStructural
<
_ek_structural
>::
precomputeShapesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
const
auto
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
auto
nb_points
=
integration_points
(
type
,
ghost_type
).
cols
();
auto
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
auto
nb_dof
=
ElementClass
<
type
>::
getNbDegreeOfFreedom
();
Array
<
Real
>
x_el
(
0
,
spatial_dimension
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
x_el
,
type
,
ghost_type
);
auto
itp_type
=
FEEngine
::
getInterpolationType
(
type
);
if
(
not
shapes
.
exists
(
itp_type
,
ghost_type
))
{
auto
size_of_shapes
=
this
->
getShapeSize
(
type
);
this
->
shapes
.
alloc
(
0
,
size_of_shapes
,
itp_type
,
ghost_type
);
}
auto
&
shapes_
=
this
->
shapes
(
itp_type
,
ghost_type
);
shapes_
.
resize
(
nb_element
*
nb_points
);
auto
x_it
=
x_el
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
auto
shapes_it
=
shapes_
.
begin_reinterpret
(
nb_dof
,
nb_dof
*
nb_nodes_per_element
,
nb_points
,
nb_element
);
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
,
++
shapes_it
,
++
x_it
)
{
auto
&
X
=
*
x_it
;
auto
&
N
=
*
shapes_it
;
ElementClass
<
type
>::
computeShapes
(
natural_coords
,
N
,
X
);
}
AKANTU_DEBUG_OUT
();
}
// namespace akantu
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeStructural
<
kind
>::
precomputeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
const
auto
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
auto
natural_spatial_dimension
=
ElementClass
<
type
>::
getNaturalSpaceDimension
();
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
nb_points
=
natural_coords
.
cols
();
auto
nb_dof
=
ElementClass
<
type
>::
getNbDegreeOfFreedom
();
auto
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
auto
itp_type
=
FEEngine
::
getInterpolationType
(
type
);
if
(
not
this
->
shapes_derivatives
.
exists
(
itp_type
,
ghost_type
))
{
auto
size_of_shapesd
=
this
->
getShapeDerivativesSize
(
type
);
this
->
shapes_derivatives
.
alloc
(
0
,
size_of_shapesd
,
itp_type
,
ghost_type
);
}
Array
<
Real
>
x_el
(
0
,
spatial_dimension
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
x_el
,
type
,
ghost_type
);
auto
&
shapesd
=
this
->
shapes_derivatives
(
itp_type
,
ghost_type
);
shapesd
.
resize
(
nb_element
*
nb_points
);
auto
x_it
=
x_el
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
auto
shapesd_it
=
shapesd
.
begin_reinterpret
(
natural_spatial_dimension
,
nb_nodes_per_element
*
nb_dof
,
nb_points
,
nb_element
);
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
,
++
x_it
,
++
shapesd_it
)
{
// compute shape derivatives
auto
&
X
=
*
x_it
;
auto
&
B
=
*
shapesd_it
;
ElementClass
<
type
>::
computeShapeDerivatives
(
natural_coords
,
B
,
X
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeStructural
<
kind
>::
interpolateOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
UInt
nb_dof
,
const
GhostType
&
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_ASSERT
(
out_uq
.
getNbComponent
()
==
nb_dof
,
"The output array shape is not correct"
);
auto
itp_type
=
FEEngine
::
getInterpolationType
(
type
);
const
auto
&
shapes_
=
shapes
(
itp_type
,
ghost_type
);
auto
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerElement
();
auto
nb_quad_points_per_element
=
integration_points
(
type
,
ghost_type
).
cols
();
Array
<
Real
>
u_el
(
0
,
nb_nodes_per_element
*
nb_dof
);
FEEngine
::
extractNodalToElementField
<
type
>
(
mesh
,
in_u
,
u_el
,
ghost_type
,
filter_elements
);
auto
nb_quad_points
=
nb_quad_points_per_element
*
u_el
.
size
();
out_uq
.
resize
(
nb_quad_points
);
auto
out_it
=
out_uq
.
begin_reinterpret
(
nb_dof
,
1
,
nb_quad_points_per_element
,
u_el
.
size
());
auto
shapes_it
=
shapes_
.
begin_reinterpret
(
nb_dof
,
nb_dof
*
nb_nodes_per_element
,
nb_quad_points_per_element
,
nb_element
);
auto
u_it
=
u_el
.
begin_reinterpret
(
nb_dof
*
nb_nodes_per_element
,
1
,
nb_quad_points_per_element
,
u_el
.
size
());
for_each_elements
(
nb_element
,
filter_elements
,
[
&
](
auto
&&
el
)
{
auto
&
uq
=
*
out_it
;
const
auto
&
u
=
*
u_it
;
auto
N
=
Tensor3
<
Real
>
(
shapes_it
[
el
]);
for
(
auto
&&
q
:
arange
(
uq
.
size
(
2
)))
{
auto
uq_q
=
Matrix
<
Real
>
(
uq
(
q
));
auto
u_q
=
Matrix
<
Real
>
(
u
(
q
));
auto
N_q
=
Matrix
<
Real
>
(
N
(
q
));
uq_q
.
mul
<
false
,
false
>
(
N
,
u
);
}
++
out_it
;
++
u_it
;
});
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeStructural
<
kind
>::
gradientOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_nablauq
,
UInt
nb_dof
,
const
GhostType
&
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
auto
itp_type
=
FEEngine
::
getInterpolationType
(
type
);
const
auto
&
shapesd
=
shapes_derivatives
(
itp_type
,
ghost_type
);
auto
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
auto
element_dimension
=
ElementClass
<
type
>::
getSpatialDimension
();
auto
nb_quad_points_per_element
=
integration_points
(
type
,
ghost_type
).
cols
();
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerElement
();
Array
<
Real
>
u_el
(
0
,
nb_nodes_per_element
*
nb_dof
);
FEEngine
::
extractNodalToElementField
<
type
>
(
mesh
,
in_u
,
u_el
,
ghost_type
,
filter_elements
);
auto
nb_quad_points
=
nb_quad_points_per_element
*
u_el
.
size
();
out_nablauq
.
resize
(
nb_quad_points
);
auto
out_it
=
out_nablauq
.
begin_reinterpret
(
element_dimension
,
1
,
nb_quad_points_per_element
,
u_el
.
size
());
auto
shapesd_it
=
shapesd
.
begin_reinterpret
(
element_dimension
,
nb_dof
*
nb_nodes_per_element
,
nb_quad_points_per_element
,
nb_element
);
auto
u_it
=
u_el
.
begin_reinterpret
(
nb_dof
*
nb_nodes_per_element
,
1
,
nb_quad_points_per_element
,
u_el
.
size
());
for_each_elements
(
nb_element
,
filter_elements
,
[
&
](
auto
&&
el
)
{
auto
&
nablau
=
*
out_it
;
const
auto
&
u
=
*
u_it
;
auto
B
=
Tensor3
<
Real
>
(
shapesd_it
[
el
]);
for
(
auto
&&
q
:
arange
(
nablau
.
size
(
2
)))
{
auto
nablau_q
=
Matrix
<
Real
>
(
uq
(
q
));
auto
u_q
=
Matrix
<
Real
>
(
u
(
q
));
auto
B_q
=
Matrix
<
Real
>
(
N
(
q
));
nablau_q
.
mul
<
false
,
false
>
(
B
,
u
);
}
++
out_it
;
++
u_it
;
});
AKANTU_DEBUG_OUT
();
}
}
// namespace akantu
#endif
/* __AKANTU_SHAPE_STRUCTURAL_INLINE_IMPL_CC__ */
Event Timeline
Log In to Comment